Unit 3: Transformations

3.0 Parent Functions

You need to be familiar with the following “parent functions”.
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3.1 Translations

The graphof y — k = f(x- h)is theimage of the graph
of y = f(x) after a vertical translation of £ units, and a
horizontal translation of 7 units.
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The graph of y = f (x - h) is a horizontal translation of the
graphof y = f (x). Whenh > 0, the graph is translated

h units right. When h < 0, the graph is translated | k| units
left.

The graph of y - k = f (x) is a vertical translation of the
graphof y = f (x).Whenk > 0, the graph is translated k
units up. When k < 0, the graph is translated |k | units down.
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Example 5: The graph of y = 2 is translated 3 units left and 2 units up.
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What is the equation of the image graph? _
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Example 6: Given the graph of y = f(x) below, sketch the graphs of:
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Example 7: Describe how the graph of y = é could have been

translated to create the graph of each function below. What
are the equations of the asymptotes of each image graph?
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3.2 Transformations — Reflections

A graph may be reflected in the x-axis or the y-axis. For a
function y = f(x)

e The graph of y = —f(x) is the image of the graph of y = f(x) after a
reflection in the x-axis. A point (x,y) on y = f(x) corresponds to the
point (x, —y)ony = —f(x).

e The graph of y = f(—x) is the image of the graph of y = f(x) aftera
reflection in the y-axis. A point (x,y) on y = f(x) corresponds to the
point (—x,y)ony= f(—x).
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Reflecting over the x-axis

y = f(x) y = —f()
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Example 3:

y = f(x) y=—f®

Example 4:

Reflecting over the y-axis
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< *hE%‘ample 6: The graph of y = g(x) is given.
< W Yoe E‘F Sketch the graph of ¥ = —g(x). State the domain and range of each function.
A ? . Sketch the graph of v = g(—x). State the domain and range of each function.
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Example 7: The graph of y = g(x) is given.
a. Sketch the graph of ¥ = —g(x). State the domain and range of each function.
b. Sketch the graph of v = g(—x). State the domain and range of each function.
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Example 8: The graph of y = ﬁ was reflected in the x-axis and its

image is shown. What is the equation of the image?




3.3 Stretching and Compressing Graphs of Functions

Vertical Stretch or Compression: y = a f(x)

The graph of y = a f(x) is the image of the graph of y = (x) after
a vertical stretch, compression or reflection. Point (x, y) on
y =f(x) corresponds to point (x, ay) ony =af( x) .
e When 0 < |a| < 1, there is a vertical compression by a
factor of |al|

e When |a| > 1, there is a vertical stretch by a factor of |a|

e When a < 0, there is a reflection in the x-axis as well as the
stretch or compression.

Ex. 1: y = f(x) = x?
p = 3f(x)

Y2 = _%f(x)
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Ex. 3

y=f(x)

= —-fx)
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Horizontal Stretch or Compression Y =f(bx)
—

The graph of y = f(bx) is the image of the graph of y = f(x) after
a horizontal stretch, compression or reflection. Point (x, y) on
y = f(x) corresponds to point G ) y) ony = f(bx).
« When 0 < |b| < 1, there is a horizontal stretch by a
factor of %
« When |b| > 1, there is a horizontal compression by a
factor @

« Whenb <0, there is a reflection in the y-axis as well as
the stretch or compression.
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Ex. 5

y=f(x)

v = f(2x)
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Ex. 6

Given the graph of y = f(x), sketch
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Combining Horizontal and Vertical Movement

The point (x.y) ony = f(x) corresponds to the point
G,ay) ony = af (bx).

-
Ex. 7 Given the graph of y = f(x), sketch y = Zf(—{].%f)
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3.4 Combining Transformations of Functions

a. Graph y = XB. Translate the graph 2 units down, and then stretch it
vertically by a factor of 3. Sketch the graph.

b. Graph v = x". Stretch the graph by a factor of 3, and then translate the
graph 2 units down. Sketch the graph.

a. b.

What do you f0tice?

Combining Transformations

The graph of y — k = af(b[x — h}) is the image of the graph of y = f(x)
1 these transformations:

. ‘% horizontal stretch or compression by a factor of Il?l
O
‘-""'o A reflection in the y-axis if b < 0;

C
CQ("Q o g A vertical stretch or compression by a factor of |a|
Q\L i" o A reflection in the x-axis if a < 0.
S e
Followed by:
e A horizontal translation of h units
e A vertical translation of k units.

Point (x,v) on the graph of y = f(x) corresponds to the point (E + h,ay + k)
on the graph of y — k = af(b (x — h]); this is the general transformation.
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Ex. 1. Here is the graph of = f(x) . Sketch the graph of its image after a vertical
: 1 : :
compression by a factor of 3 then a translation of 2 units up.
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Ex. 2. Use the graph of y = g(x) given below to sketch y = -g(x) + Z.
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Ex. 3. Sketch the graph of y — 3 = xfx -2 "
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Ex. 4 Given the graph of y = f(x), sketch the graph of y + 4 = f (— (x + 1)) ‘)p\’t X
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5. The graph of y = g(x) is the image of the graph of v = f(x) after a
combination of transformations. Label corresponding points. Write and verify an
equation for the image graph in terms of the function f.

I
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3.5 Transformations — Inverse Relations

Recall: Solving for x.

a. y—3x *3 3*"%:3')( 5‘;'?';’\_':'-)(

b, y =2 W5 AW =3 ’l:\__-x

_ s
c. y=3x? ;'E‘:') 3*6 g‘]{ (‘ ’&- X j’.
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d. y=2(x—3)t+4 <5-'-*.'-='1{1-'5)ﬁ %“_u". -&"5\ “‘"K"f'
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FUNCTION- a rule that assigns to each element in the domain exactly one
value from the range.

Vertical line test fora function:
WesDatwara®:  Not afandrion

Reflecting in the line y = x.
e Fora function y = f(x), the graph of x = f(y) is the image of the graph
of y = f(x) after a reflection in the lne y = x. WX
e y= f(x)and x = f (y) are inverses of each other.
e A point (x,y) on y= [ (x) corresponds to the point (y,x) on x =
_— =

f o).
e When the inverse is also a function. the notatioq! i x 91'5 used to denote
the inverse function. We say, “finverse of x.”
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Ex. 1. Finding an Inverse — Given the graph
Reflecty = f(x) over the liney = x in both graphs below.

»7 YK

Ex. 2. Given the graph of the function y = f(x).
a. Sketch the inverse of the given function:

O > (v,X)
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b. Is the inverse a function? Why or why not?

No’r wﬁn.f\c’ﬁw > 9 US*J&W £or 508 JAWS of %

c. State the domain and the range of the function and its inverse.
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Note: The domainof y = f(x) is therange of x = f(y), and therangeof y = f(x)is
the domain of x = f(y).

To determine the equation of an inverse function, interchange x and y in the
equation of the function, then solve the resulting equation for y.

Ex. 3.
a. Determine the equation of the inverse of y = —x? + 4.
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b. Sketch the graphs of y = —x? + 4 and its inverse.
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c. Is the inverse a function?
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Ex.4.
a. Sketch y = (x + 1)% + 3 and its inverse. \ ', (~) ;3 )
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b
b. Determine two ways to restrict the dcn:naln of y = [?+ 1)? + 3 so that
its inverse is a function. Write the equation of the inverse each time.
Use a graph to illustrate each way. '.".,j X ~3~\ =Y
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Ex. 5. Determine algebraically whether the functions are inverses of each
other.

a. y=3x—6andy= @ N ab INNLCES
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