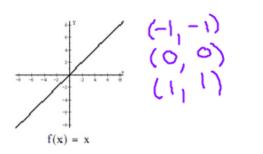
Unit 3: Transformations

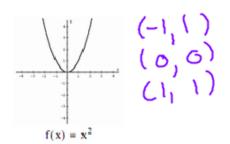
3.0 Parent Functions

You need to be familiar with the following "parent functions".

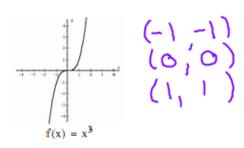
Linear Function



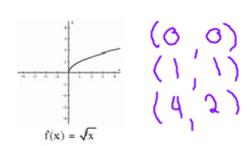
Quadratic Function



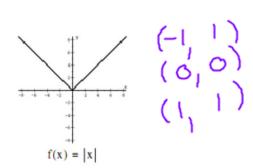
Cubic Function



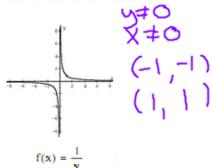
Square Root Function



Absolute Value Function



Rational Function

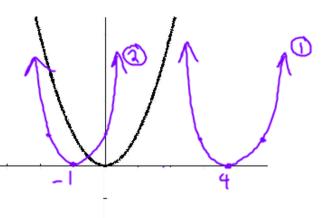


3.1 Translations

The graph of y - k = f(x - h) is the image of the graph of y = f(x) after a vertical translation of k units, and a horizontal translation of k units.

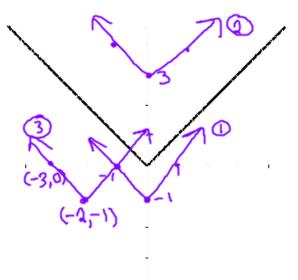
Example 1: $y = x^2$

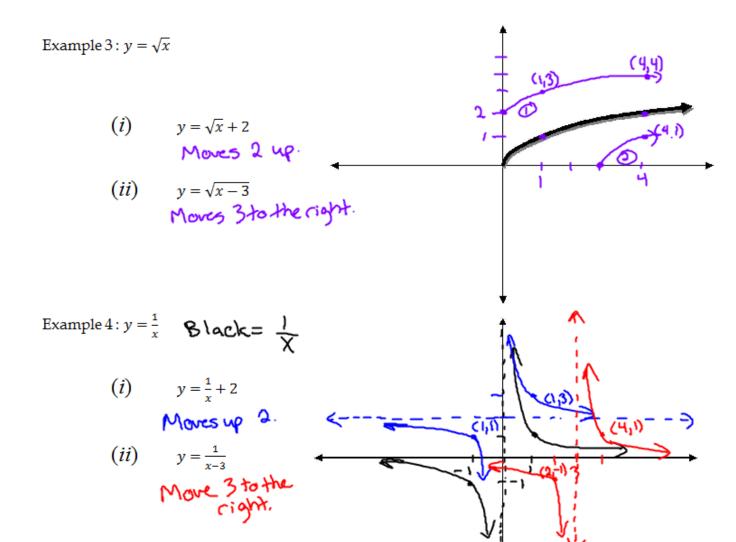
- (i) $y = (x 4)^2$ Move 4 to the right
- (ii) $y = (x+1)^2$ Move lunit to the left.



Example 2: y = |x|

- (i) y+1=|x|y=|x|-1
- (ii) y-3=|x|y=|x|+3
- (iii) y+1=|x+2| y=|x+2|-1More down 1. More left 2.





The graph of y = f(x - h) is a horizontal translation of the graph of y = f(x). When h > 0, the graph is translated h units right. When h < 0, the graph is translated |h| units left.

The graph of y - k = f(x) is a vertical translation of the graph of y = f(x). When k > 0, the graph is translated k units up. When k < 0, the graph is translated |k| units down.

Example 5: The graph of $y = \frac{1}{x}$ is translated 3 units left and 2 units up.

5: The graph of $y = \frac{1}{x}$ is manifestations. What is the equation of the image graph?

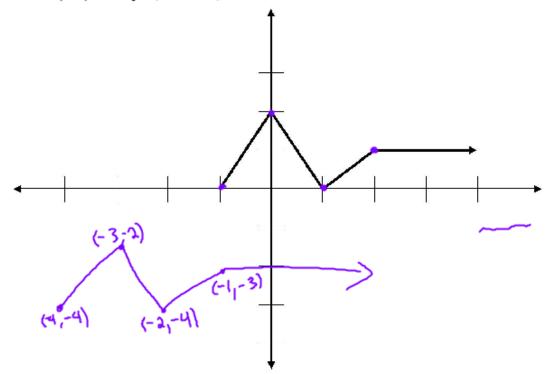
Let offer transformations $y = \frac{1}{x}$ Let offer transformations $y = \frac{1}{x}$ Let offer transformations

Example 6: Given the graph of y = f(x) below, sketch the graphs of:

(i)
$$f(x+3)$$
 Move 3 left.

(ii)
$$f(x) - 4$$
 Move 4 down.

(iii)
$$f(x+3)-4$$
 More 3 left + 4 down.



Example 7: Describe how the graph of $y = \frac{1}{x^2}$ could have been translated to create the graph of each function below. What are the equations of the asymptotes of each image graph?

a.
$$y-3=\frac{1}{x^2}$$

 $y=\frac{1}{x^2}+3$ More the graph of $y=\frac{1}{x^2}$ up 3.

b.
$$y + 4 = \frac{1}{(x+3)^2}$$

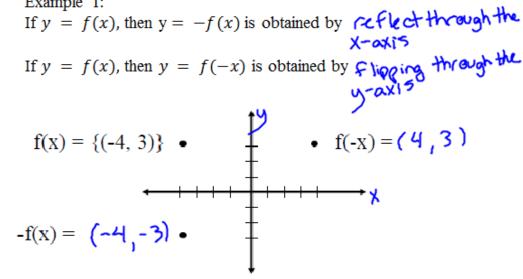
$$y = \frac{1}{(x+3)^2} - 4$$
Move the graph of $y = \frac{1}{x^2}$ down
H and left 3.

3.2 Transformations – Reflections

A graph may be reflected in the x-axis or the y-axis. For a function y = f(x)

- The graph of y = -f(x) is the image of the graph of y = f(x) after a reflection in the x-axis. A point (x, y) on y = f(x) corresponds to the point (x, -y) on y = -f(x).
- The graph of y = f(-x) is the image of the graph of y = f(x) after a reflection in the y-axis. A point (x, y) on y = f(x) corresponds to the point (-x, y) on y = f(-x).

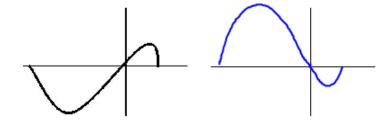
Example 1:



Example 2:

Reflecting over the x-axis

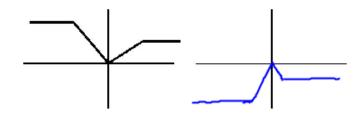
$$y = f(x) \qquad \qquad y = -f(x)$$



Example 3:

$$y = f(x)$$

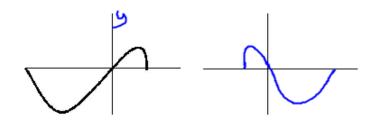
$$y = f(x) \qquad \qquad y = -f(x)$$



Example 4: Reflecting over the y-axis

$$y = f(x)$$

$$y = f(x) y = f(-x)$$



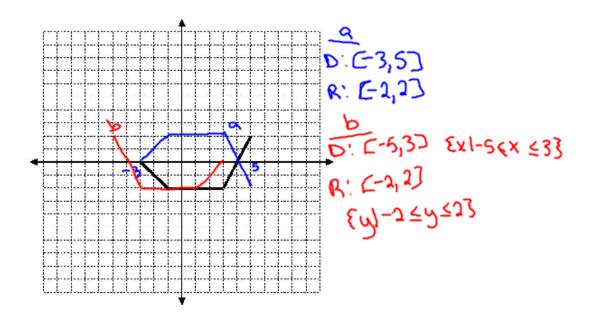
Example 5:
$$y = f(x)$$

$$y = f(-x)$$

Example 6: The graph of y = g(x) is given.

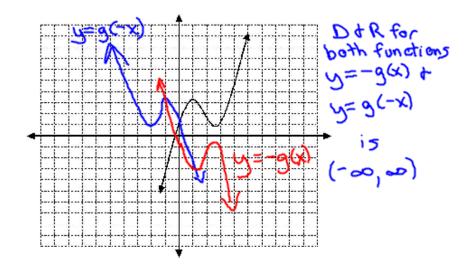
Sketch the graph of y = -g(x). State the domain and range of each function.

Sketch the graph of y = g(-x). State the domain and range of each function.

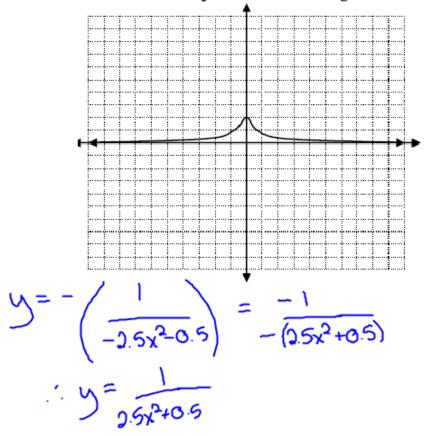


Example 7: The graph of y = g(x) is given.

- a. Sketch the graph of y = -g(x). State the domain and range of each function.
- b. Sketch the graph of y = g(-x). State the domain and range of each function.



Example 8: The graph of $y = \frac{1}{-2.5x^2 - 0.5}$ was reflected in the x-axis and its image is shown. What is the equation of the image?



3.3 Stretching and Compressing Graphs of Functions

Vertical Stretch or Compression:
$$y = a f(x)$$

The graph of y = af(x) is the image of the graph of y = f(x) after a vertical stretch, compression or reflection. Point (x, y) on y = f(x) corresponds to point (x, ay) on y = af(x).

- When 0 < |a| < 1, there is a vertical compression by a factor of |a|
- When |a| > 1, there is a vertical stretch by a factor of |a|
- When a < 0, there is a reflection in the x-axis as well as the stretch or compression.

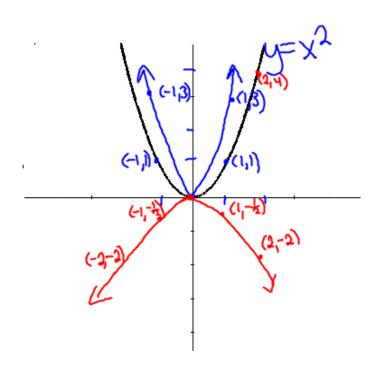
Ex. 1:
$$y = f(x) = x^2$$

$$y_1 = 3f(x)$$

$$y_2 = -\frac{1}{2}f(x)$$

$$(x_1y) \rightarrow (x_1y)$$

$$(x_1y) \rightarrow (x_1xy)$$



$$y = f(x)$$

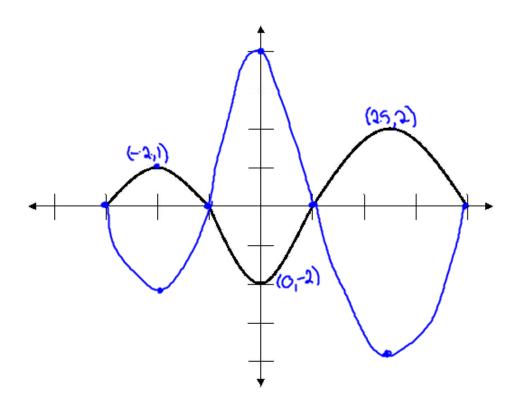
$$y_{1} = -2f(x)$$

$$(x_{1}y) \ni (x_{1}-2y)$$

$$(-2,1) \ni (-2,-2)$$

$$(0,-2) \ni (0, 4)$$

$$(2.5,2) \ni (2.5,-4)$$



Ex. 3

$$y = f(x)$$

$$y_1 = -\frac{1}{2}f(x)$$

$$(x, y) \Rightarrow (x, -\frac{1}{2}y)$$

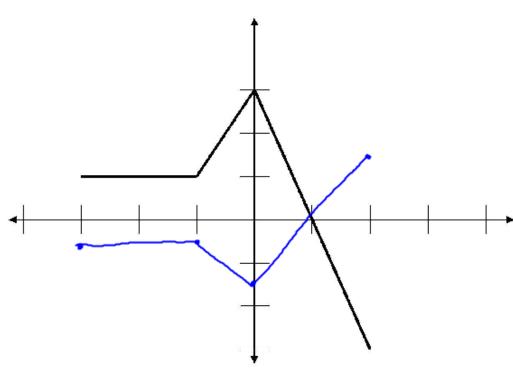
$$(-3,1) \rightarrow (-3,-4)$$

$$(-3,1) \rightarrow (-3,-\frac{1}{4})$$

$$(-1,1) \rightarrow (-1,-\frac{1}{4})$$

$$(0,3) \rightarrow (0,-\frac{1}{4})$$

$$(2,-3) \rightarrow (2,+\frac{3}{4})$$



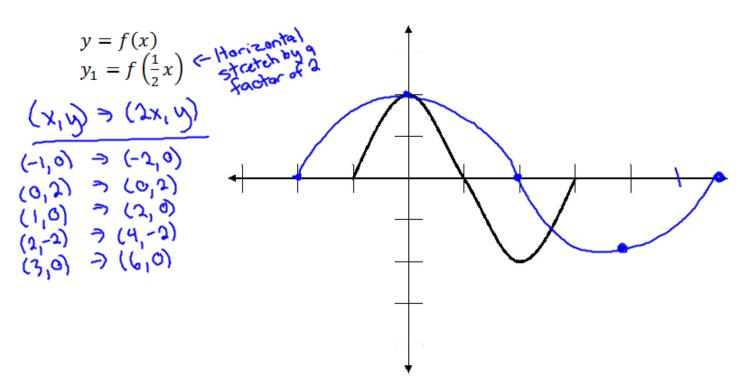
Horizontal Stretch or Compression

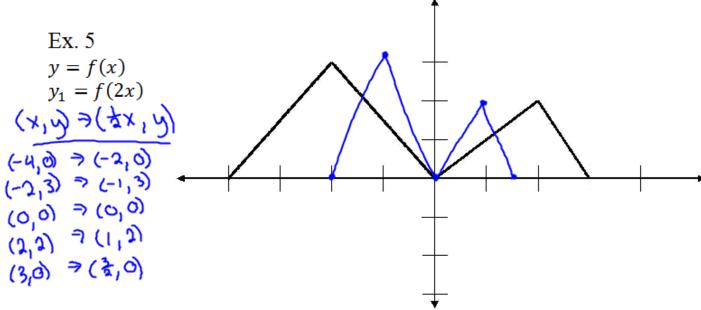
$$y = f(bx)$$

The graph of y = f(bx) is the image of the graph of y = f(x) after a horizontal stretch, compression or reflection. Point (x, y) on y = f(x) corresponds to point $\left(\frac{x}{b}, y\right)$ on y = f(bx).

- When 0 < |b| < 1, there is a horizontal stretch by a factor of $\frac{1}{b}$
- When |b| > 1, there is a horizontal compression by a factor of $\frac{1}{b}$
- When b < 0, there is a reflection in the y-axis as well as the stretch or compression.

Ex. 4

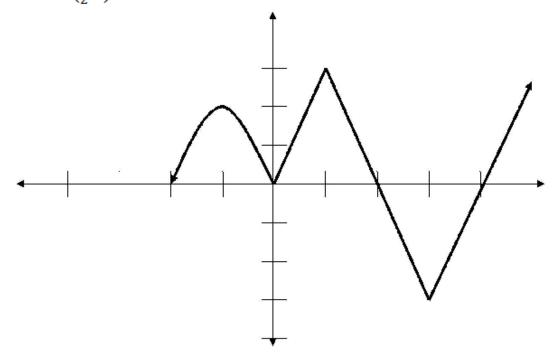




Ex. 6

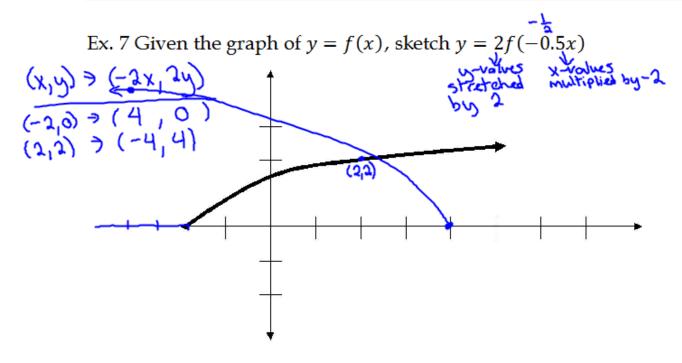
a.
$$y_1 = f(2x) \rightarrow X$$
-values halved

Given the graph of
$$y = f(x)$$
, sketch a. $y_1 = f(2x)$ \Rightarrow x -values halved b. $y_2 = f\left(\frac{1}{2}x\right)$ \Rightarrow x -values doubled



Combining Horizontal and Vertical Movement

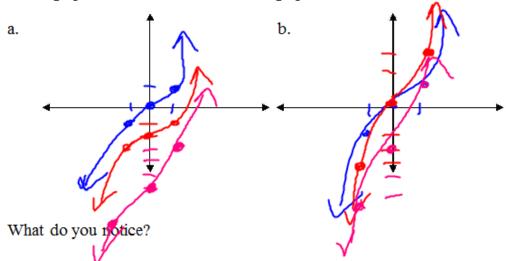
The point (x, y) on y = f(x) corresponds to the point $\left(\frac{x}{b}, ay\right)$ on y = af(bx).



3.4 Combining Transformations of Functions

Practice: Using your graphing calculator.

- a. Graph $y = x^3$. Translate the graph 2 units down, and then stretch it vertically by a factor of 3. Sketch the graph.
- b. Graph $y = x^3$. Stretch the graph by a factor of 3, and then translate the graph 2 units down. Sketch the graph.



Combining Transformations

The graph of y - k = af(b(x - h)) is the image of the graph of y = f(x) after these transformations:

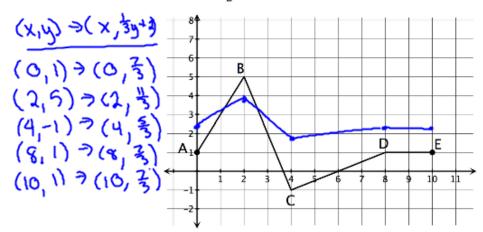
- A horizontal stretch or compression by a factor of $\frac{1}{|b|}$
- A reflection in the y-axis if b < 0;
- A vertical stretch or compression by a factor of |a|
- A reflection in the x-axis if a < 0.

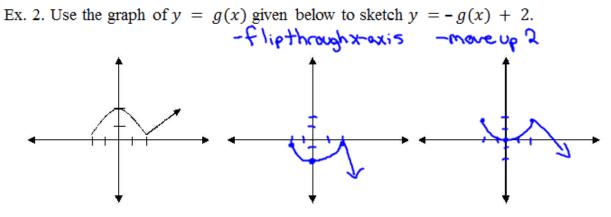
Followed by:

- A horizontal translation of h units
- A vertical translation of k units.

Point (x, y) on the graph of y = f(x) corresponds to the point $\left(\frac{x}{b} + h, ay + k\right)$ on the graph of y - k = af(b(x - h)); this is the general transformation.

Ex. 1. Here is the graph of = f(x). Sketch the graph of its image after a vertical compression by a factor of $\frac{1}{3}$ then a translation of 2 units up.





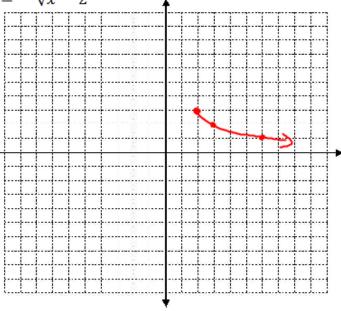
Ex. 3. Sketch the graph of $y - 3 = -\sqrt{x - 2}$

Ex. 3. Sketch the graph of $y - y = -\sqrt{x-2} + 3$ The synthese multiplied by -1

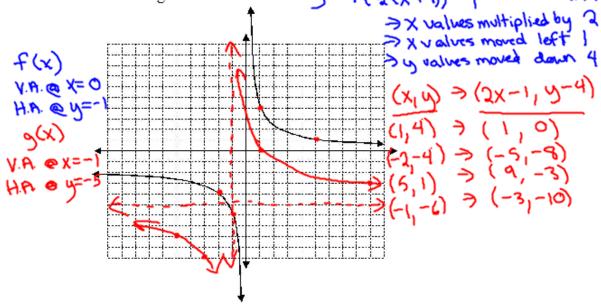
The values right 2

The values mared up 3 $(x, y) \Rightarrow (x+2, -1y+3)$ (0, 0) (3, 3) (1, 1) (4, 2) (6, 1)

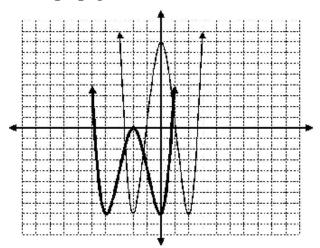
16



Ex. 4 Given the graph of y = f(x), sketch the graph of $y + 4 = f\left(\frac{1}{2}(x+1)\right)$. State the domain and range of each function. $y = f\left(\frac{1}{2}(x+1)\right) - 4$



Ex. 5. The graph of y = g(x) is the image of the graph of y = f(x) after a combination of transformations. Label corresponding points. Write and verify an equation for the image graph in terms of the function f.



3.5 Transformations – Inverse Relations

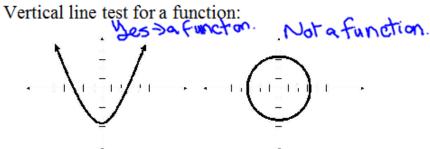
Recall: Solving for x.

a.
$$y = 3x - 4$$
 $y+4=3x$ $y+4=3x$ $y+4=x$

b.
$$y = \frac{3x-5}{2}$$
 $\frac{3y-5}{2} = 3x + 5 = 3x + 3 = x$

c.
$$y = 3x^2 - 5$$
 $y + 5 = 3x^2$ $y + 5 = 10$ $x = \pm 10 + 5$

FUNCTION- a rule that assigns to each element in the domain exactly one value from the range.

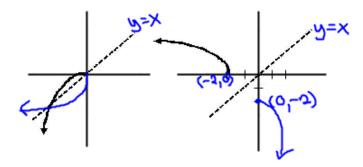


Reflecting in the line y = x.

- For a function y = f(x), the graph of x = f(y) is the image of the graph of y = f(x) after a reflection in the line y = x.
- y = f(x) and x = f(y) are inverses of each other.
- A point (x, y) on y = f(x) corresponds to the point (y, x) on x =f(y).
- When the inverse is also a function, the notation $f^{-1}(x)$ is used to denote the inverse function. We say, "finverse of x."

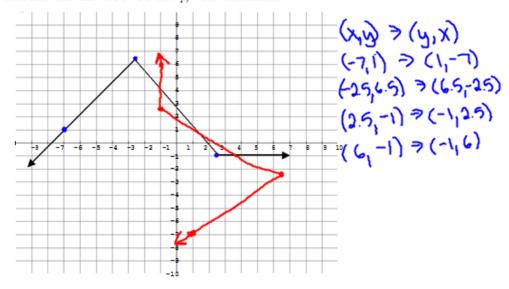
Ex. 1. Finding an Inverse - Given the graph

Reflect y = f(x) over the line y = x in both graphs below.



Ex. 2. Given the graph of the function y = f(x).

a. Sketch the inverse of the given function:



b. Is the inverse a function? Why or why not?

Not a function > 2 yrvalves for some values of x

c. State the domain and the range of the function and its inverse.

$$y = f(x) \qquad y = f^{-1}(x)$$

$$(-\infty, 6.5) \qquad (-\infty, 6.5)$$

$$(-\infty, \infty)$$

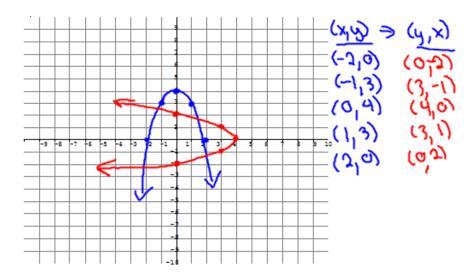
Note: The domain of y = f(x) is the range of x = f(y), and the range of y = f(x) is the domain of x = f(y).

To determine the equation of an inverse function, interchange x and y in the equation of the function, then solve the resulting equation for y.

Ex. 3.

a. Determine the equation of the inverse of $y = -x^2 + 4$.

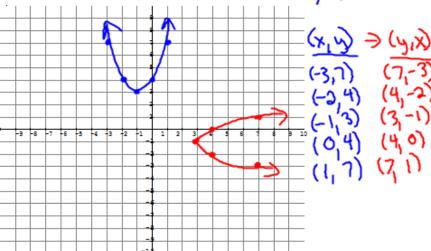
b. Sketch the graphs of $y = -x^2 + 4$ and its inverse.



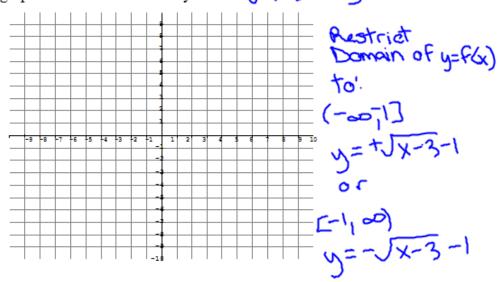
c. Is the inverse a function?

Ex.4.

a. Sketch $y = (x + 1)^2 + 3$ and its inverse. (-)



b. Determine two ways to restrict the domain of $y = (x + 1)^2 + 3$ so that its inverse is a function. Write the equation of the inverse each time. Use a graph to illustrate each way.



- Ex. 5. Determine algebraically whether the functions are inverses of each
 - a. y = 3x 6 and $y = \frac{(x-6)}{3}$ Inverse of y=3x-6!

x = 3y - 6

X+6=34

x+6=y

b. $y = -x^2 + 3, x \ge 0$ and $y = \sqrt{3 - x}$

 $X = -y^{2} + 3$ $X - 3 = -y^{2}$ $- x + 3 = y^{2}$

 $\sqrt{-x+3} = y$. They are inverses.