Lesson 1.4 Exercises, pages 48-53

A
3. Write a geometric series for each geometric sequence.
a) $1,4,16,64,256, \ldots$
b) $20,-10,5,-2.5,1.25, \ldots$
$1+4+16+64+256+\ldots$

$$
20-10+5-2.5+1.25-\ldots
$$

4. Which series appear to be geometric? If the series could be geometric, determine S_{5}.
a) $2+4+8+16+32+\ldots$
b) $2-4+8-16+32-\ldots$
The series could be geometric.
S_{5} is: $2+4+8+16+32=62$
The series could be geometric.
S_{5} is: $2-4+8-16+32=22$
c) $1+4+9+16+25+\ldots$
d) $-3+9-27+81-243+\ldots$
The series is not geometric.
The series could be geometric.

$$
S_{5} \text { is: }-3+9-27+81-243=-183
$$

5. Use the given data about each geometric series to determine the indicated value.
a) $t_{1}=1, r=0.3$; determine S_{8}
b) $t_{1}=\frac{3}{4}, r=\frac{1}{2}$; determine S_{4}
Use: $S_{n}=\frac{t_{i}\left(1-r^{n}\right)}{1-r}, r \neq 1$
Use: $S_{n}=\frac{t_{1}\left(1-r^{r}\right)}{1-r}, r \neq 1$

Substitute:

$$
\begin{aligned}
& n=8, t_{1}=1, r=0.3 \\
& S_{8}=\frac{1\left(1-0.3^{8}\right)}{1-0.3} \\
& S_{8}=1.428
\end{aligned}
$$

Substitute:

$$
\begin{aligned}
& n=4, t_{1}=\frac{3}{4}, r=\frac{1}{2} \\
& S_{4}=\frac{\frac{3}{4}\left(1-\left(\frac{1}{2}\right)^{4}\right)}{1-\frac{1}{2}} \\
& S_{4}=\frac{45}{32}, \text { or approximately } 1.406
\end{aligned}
$$

B
6. Determine S_{6} for each geometric series.
a) $2+10+50+\ldots$
$t_{1}=2$ and r is: $\frac{10}{2}=5$
Use: $S_{n}=\frac{t_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
Substitute:

$$
\begin{aligned}
& n=6, t_{1}=2, r=5 \\
& S_{6}=\frac{2\left(1-5^{6}\right)}{1-5} \\
& S_{6}=7812
\end{aligned}
$$

b) $80-40+20-\ldots$
$t_{1}=80$ and r is: $\frac{-40}{80}=-0.5$
Use: $S_{n}=\frac{t_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
Substitute:
$n=6, t_{1}=80, r=-0.5$
$S_{6}=\frac{80\left(1-(-0.5)^{6}\right)}{1-(-0.5)}$
$S_{6}=52.5$
7. Determine S_{10} for each geometric series. Give the answers to 3 decimal places.
a) $0.1+0.01+0.001+0.0001+\ldots$
b) $1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+\ldots$
$t_{1}=0.1$ and r is: $\frac{0.01}{0.1}=0.1$
Use: $S_{n}=\frac{t_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
Substitute:
$n=10, t_{1}=0.1, r=0.1$
$S_{10}=\frac{0.1\left(1-0.1^{10}\right)}{1-0.1}$
$S_{10} \doteq 0.111$

$$
\begin{aligned}
& t_{1}=1 \text { and } r \text { is: } \frac{-\frac{1}{3}}{1}=-\frac{1}{3} \\
& \text { Use: } S_{n}=\frac{t_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1 \\
& \text { Substitute: } \\
& n=10, t_{1}=1, r=-\frac{1}{3} \\
& \qquad S_{10}=\frac{1\left(1-\left(-\frac{1}{3}\right)^{10}\right)}{1-\left(-\frac{1}{3}\right)} \\
& \qquad S_{10} \doteq 0.750
\end{aligned}
$$

8. a) Explain why this series appears to be geometric:

$$
1+5+25+125+\ldots
$$

After the 1st term, each term is 5 times as great as the preceding term.
b) What information do you need to be certain that this is a geometric series?

I need to know that the series has a common ratio of 5 .
c) What assumptions do you make when you identify or extend a geometric series?

I assume that the ratio of consecutive terms is the common ratio.
9. For each geometric series, determine how many terms it has then calculate its sum.
a) $1-2+4-8+\ldots-512$
$t_{1}=1$ and r is $\frac{-2}{1}=-2$
To determine n, use: $t_{n}=t_{1} r^{n-1}$
Substitute: $t_{n}=-512, t_{1}=1, r=-2$
$-512=1(-2)^{n-1}$
$(-2)^{9}=(-2)^{n-1}$
$9=n-1$
$n=10$
There are 10 terms.
There are 10 terms.
To determine the sum, use: $S_{n}=\frac{t_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
Substitute: $n=10, t_{1}=1, r=-2$
$S_{10}=\frac{1\left(1-(-2)^{10}\right)}{1-(-2)}$
$S_{10}=-341$
The sum is -341 .
b) $-6561+2187-729+243-\ldots-1$
$t_{1}=-6561$ and r is $\frac{2187}{-6561}=-\frac{1}{3}$
To determine n, use: $t_{n}=t_{1} r^{n-1}$
Substitute: $t_{n}=-1, t_{1}=-6561, r=-\frac{1}{3}$
$-1=-6561\left(-\frac{1}{3}\right)^{n-1}$
$\frac{1}{6561}=\left(-\frac{1}{3}\right)^{n-1}$
$\left(-\frac{1}{3}\right)^{8}=\left(-\frac{1}{3}\right)^{n-1}$
$8=n-1$
$n=9$
There are 9 terms.
Use: $S_{n}=\frac{t_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
Substitute: $n=9, t_{1}=-6561, r=-\frac{1}{3}$
$S_{9}=\frac{-6561\left(1-\left(-\frac{1}{3}\right)^{9}\right)}{1-\left(-\frac{1}{3}\right)}$
$S_{9}=-4921$
The sum is -4921 .
10. Identify the terms in each partial sum of a geometric series.
a) $S_{5}=62, r=2$

To determine t_{1},

$$
\text { use } S_{n}=\frac{t_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1
$$

Substitute: $n=5, S_{n}=62, r=2$
$62=\frac{t_{1}\left(1-2^{5}\right)}{1-2}$
$62=31 t_{1}$
$t_{1}=2$
So, t_{2} is $2(2)=4 ; t_{3}$ is $4(2)=8$; t_{4} is $8(2)=16 ; t_{5}$ is $16(2)=32$
b) $S_{8}=1111.1111 ; r=0.1$

To determine t_{1},
use $S_{n}=\frac{t_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
Substitute: $n=8$,
$S_{n}=1111.1111, r=0.1$
$1111.1111=\frac{t_{1}\left(1-0.1^{8}\right)}{1-0.1}$
$1111.1111=1.1111111 t_{1}$
$t_{1}=1000$
So, t_{2} is $1000(0.1)=100$;
t_{3} is $100(0.1)=10$;
t_{4} is $10(0.1)=1$;
t_{5} is $1(0.1)=0.1$;
t_{6} is $(0.1)(0.1)=0.01 ;$
t_{7} is $0.01(0.1)=0.001$;
t_{8} is $0.001(0.1)=0.0001$
11. On Monday, Ian had 3 friends visit his personal profile on a social networking website. On Tuesday, each of these 3 friends had 3 different friends visit Ian's profile. On Wednesday, each of the 9 friends on Tuesday had 3 different friends visit Ian's profile.
a) Write the total number of friends who visited Ian's profile as a geometric series. What is the first term? What is the common ratio?

The 1st term is 3, the number of friends on Monday.
The common ratio is 3 .
So, the geometric series is: $3+9+27$
b) Suppose this pattern continued for 1 week. What is the total number of people who visited Ian's profile? How do you know your answer is correct?

The geometric series continues and has 7 terms;
one for each day of the week.
The series is: $3+9+27+81+243+729+2187$
Use: $S_{n}=\frac{t_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1 \quad$ Substitute: $n=7, t_{1}=3, r=3$
$S_{7}=\frac{3\left(1-3^{7}\right)}{1-3}$
$S_{7}=3279$
I checked my answer by using a calculator to add the seven terms.
12. Each stroke of a vacuum pump extracts 5% of the air in a $50-\mathrm{m}^{3}$ tank. How much air is removed after 50 strokes? Give the answer to the nearest tenth of a cubic metre.

Number of strokes	Volume removed	Volume remaining
1	$50(0.05)=2.5$	$50(0.95)=47.5$
2	$47.5(0.05)=2.375$, or $2.5(0.95)$	$47.5(0.95)=45.125$
3	$45.125(0.05)=2.25625$, or $2.5(0.95)^{2}$	

The volumes removed form a geometric series with 1st term 2.5 and common ratio 0.95 .
Use: $S_{n}=\frac{t_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$ Substitute: $n=50, t_{1}=2.5, r=0.95$
$S_{50}=\frac{2.5\left(1-0.95^{50}\right)}{1-0.95}$
$S_{50}=46.1527 .$.
After 50 strokes, about $46.2 \mathrm{~m}^{3}$ of air is removed.
13. The sum of the first 10 terms of a geometric series is 1705 . The common ratio is -2 . Determine S_{11}. Explain your reasoning.

To determine t_{1}, use: $S_{n}=\frac{t_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
Substitute: $S_{n}=1705, n=10, r=-2$
$1705=\frac{t_{t}\left(1-(-2)^{10}\right)}{1-(-2)}$
$1705=-341 t_{1}$

$$
t_{1}=-5
$$

Then, $S_{11}=S_{10}+t_{11}$ $S_{11}=1705+(-5)(-2)^{10}$ $S_{11}=-3415$

C
14. Binary notation is used to represent numbers on a computer. For example, the number 1111 in base two represents $1(2)^{3}+1(2)^{2}+1(2)^{1}+1$, or 15 in base ten.
a) Why is the sum above an example of a geometric series?

Each term is one-half of the preceding term.
b) Which number in base ten is represented by

11111111111111111111 in base two? Explain your reasoning.
There are twenty 1 s digits in the number,
so it can be written as the geometric series:
$1(2)^{19}+1(2)^{18}+1(2)^{17}+\ldots+1(2)^{1}+1$
This series has 20 terms, with 1 st term 2^{19}
and common ratio 0.5 .
Use: $S_{n}=\frac{t_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1 \quad$ Substitute: $n=20, t_{1}=2^{19}, r=0.5$
$S_{20}=\frac{2^{19}\left(1-0.5^{20}\right)}{1-0.5}$
$S_{20}=1048575$
The number is 1048575.
15. Show how you can use geometric series to determine this sum:
$1+2+3+4+8+9+16+27+32+64+81+128+$ $243+256+512$

This sum comprises two geometric series:
$1+3+9+27+81+243$ and
$2+4+8+16+32+64+128+256+512$
For the first series For the second series
Use: $S_{n}=\frac{t_{1}\left(1-r^{\prime}\right)}{1-r}, r \neq 1 \quad$ Use: $S_{n}=\frac{t_{1}\left(1-r^{\prime}\right)}{1-r}, r \neq 1$
Substitute: $n=6, t_{1}=1, r=3$
Substitute: $n=9, t_{1}=2, r=2$
$S_{6}=\frac{1\left(1-3^{6}\right)}{1-3}$
$S_{9}=\frac{2\left(1-2^{9}\right)}{1-2}$
$S_{6}=364$
$S_{9}=1022$
The sum is: $364+1022=1386$
16. Determine the common ratio of a geometric series that has these
partial sums: $S_{3}=-\frac{49}{8}, S_{4}=-\frac{105}{16}, S_{5}=-\frac{217}{32}$
$S_{4}=S_{3}+t_{4}$
Substitute for S_{4} and S_{3}. $-\frac{105}{16}=-\frac{49}{8}+t_{4}$

$$
S_{5}=S_{4}+t_{5}
$$

Substitute for S_{5} and S_{4}.
$t_{4}=-\frac{7}{16}$

The common ratio is $\frac{1}{2}$.

$$
\begin{aligned}
-\frac{217}{32} & =-\frac{105}{16}+t_{5} \\
t_{5} & =-\frac{7}{32} \\
t_{5} & =t_{4}(r) \\
-\frac{7}{32} & =-\frac{7}{16}(r) \\
r & =\frac{1}{2}
\end{aligned}
$$

