Checkpoint 1: Assess Your Understanding, pages 26-28

1.1

1. Multiple Choice Which arithmetic sequence has $d=-8$ and
$t_{10}=-45$?
(A.) $27,19,11,3, \ldots$
B. $-8,-12,-16,-20, \ldots$
C. $-5,-13,-21,-29, \ldots$
D. $-27,-19,-11,-3, \ldots$
2. Write the first 4 terms of an arithmetic sequence with its 5th term equal to -4 .

Sample response: I chose a common difference of 2. $t_{5}=-4$; so t_{4} is $-4-2=-6 ; t_{3}$ is $-6-2=-8 ; t_{2}$ is $-8-2=-10$; and t_{1} is $-10-2=-12$
My arithmetic sequence is: $-12,-10,-8,-6, \ldots$
3. This sequence is arithmetic: $-8,-11,-14, \ldots$
a) Write a rule for the nth term.

```
Use: \(t_{n}=t_{1}+d(n-1) \quad\) Substitute: \(t_{1}=-8, d=-3\)
\(t_{n}=-8-3(n-1)\)
\(t_{n}=-5-3 n\)
```

b) Use your rule to determine the 17th term.

$$
\begin{aligned}
& \text { For } t_{17} \text {, use } t_{n}=-5-3 n \text { and substitute: } n=17 \\
& t_{17}=-5-3(17) \\
& t_{17}=-56
\end{aligned}
$$

4. Use the given data about each arithmetic sequence to determine the indicated values.
a) $t_{4}=-5$ and $t_{7}=-20$; determine d and t_{1}

$$
\begin{array}{ll}
\text { Use: } t_{7}=t_{4}+3 d & \text { Substitute: } t_{7}=-20, t_{4}=-5 \\
-20=-5+3 d & \\
-15=3 d & \\
\quad d=-5 & \\
\text { Use: } t_{1}=t_{4}-3 d & \text { Substitute: } t_{4}=-5, d=-5 \\
t_{1}=-5-3(-5) & \\
t_{1}=10 &
\end{array}
$$

b) $t_{1}=3, d=4$, and $t_{n}=59$; determine n

$$
\begin{aligned}
& \text { Use: } t_{n}=t_{1}+d(n-1) \quad \text { Substitute: } t_{n}=59, t_{1}=3, d=4 \\
& 59 \\
& 59 \\
& 56
\end{aligned}=4 n-4(n-1) \quad \begin{aligned}
4 n & =60 \\
n & =15
\end{aligned}
$$

5. The steam clock in the Gastown district of Vancouver, B.C., displays the time on four faces and announces the quarter hours with a whistle chime that plays the tune Westminster Quarters. This sequence represents the number of tunes played from 1 to 3 days: $96,192,288, \ldots$ Determine the number of tunes played in one year.

In one year, there are 365 days and $96(365)$, or 35040 quarters.
So, in one year, 35040 tunes are played.

1.2

6. Multiple Choice For which series could you use $S_{n}=\frac{n\left(t_{1}+t_{n}\right)}{2}$ to determine its sum?
A. $3+5+7+10+13+17+21$
(B.) $3-1-5-9-13-17-21$
C. $-3-5-8-10-13-15-18$
D. $3-1+5-3+7-5+9$
7. a) Create the first 5 terms of an arithmetic series with a common difference of -3 .

Sample response: I chose a first term of 7 .
$t_{1}=7$; so t_{2} is $7-3=4 ; t_{3}$ is $4-3=1$; t_{4} is $1-3=-2$; and
t_{5} is $-2-3=-5$
My arithmetic series is: $7+4+1-2-5-\ldots$
b) Determine S_{26} for your series.

Sample response:
Use: $S_{n}=\frac{n\left[2 t_{1}+d(n-1)\right]}{2}$ Substitute: $n=26, t_{1}=7, d=-3$
$S_{26}=\frac{26[2(7)-3(26-1)]}{2}$
$S_{26}=-793$
8. Determine the sum of this arithmetic series:
$-2+3+8+13+\ldots+158$
To determine n, use $t_{n}=t_{1}+d(n-1)$
Substitute: $t_{n}=158, t_{1}=-2, d=5$
$158=-2+5(n-1)$
$160=5 n-5$
$165=5 n$

$$
n=33
$$

Use: $S_{n}=\frac{n\left(t_{1}+t_{n}\right)}{2} \quad$ Substitute: $n=33, t_{1}=-2, t_{n}=158$
$S_{33}=\frac{33(-2+158)}{2}$
$S_{33}=2574$
9. Use the given data about each arithmetic series to determine the indicated value.
a) $S_{17}=106.25$ and $t_{17}=8.25$; determine t_{1}

$$
\begin{aligned}
\text { Use: } S_{n} & =\frac{n\left(t_{1}+t_{n}\right)}{2} \quad \text { Substitute: } S_{n}=106.25, n=17, t_{n}=8.25 \\
106.25 & =\frac{17\left(t_{1}+8.25\right)}{2} \\
212.5 & =17 t_{1}+140.25 \\
17 t_{1} & =72.25 \\
t_{1} & =4.25
\end{aligned}
$$

b) $S_{15}=337.5$ and $t_{1}=-2$; determine d

Use: $S_{n}=\frac{n\left(t_{1}+t_{n}\right)}{2}$ to determine t_{15}.
Substitute: $S_{n}=337.5, n=15, t_{1}=-2$

$$
\begin{aligned}
337.5 & =\frac{15\left(-2+t_{15}\right)}{2} \\
675 & =-30+15 t_{15} \\
705 & =15 t_{15} \\
t_{15} & =47
\end{aligned}
$$

Use: $t_{n}=t_{1}+d(n-1) \quad$ Substitute: $t_{n}=47, t_{1}=-2, n=15$
$47=-2+d(15-1)$
$49=14 d$
$d=3.5$

