Lesson 2.1 Exercises, pages 89-94

3. Write the absolute value of each number.

b)
$$-7.6 \mid -7.6 \mid = 7.6$$

c)
$$0 |0| = 0$$

d)
$$-\frac{7}{2}$$
 $\left|-\frac{7}{2}\right| = \frac{7}{2}$

4. Determine the absolute value of the number represented by each point on the number line.

A:
$$|1| = 1$$

B:
$$|0| = 0$$

A:
$$|1| = 1$$
 B: $|0| = 0$ C: $|-1.5| = 1.5$ D: $|-3| = 3$

$$D: |-3| = 3$$

5. Use absolute value to determine the distance between each pair of numbers on a number line. Sketch a number line to illustrate the solution.

$$\mathbf{a}$$
) -5 and 7

$$|7 - (-5)| = |12$$

= 12

$$|-10 - (-3)| = |-7$$

6. Evaluate.

a)
$$\sqrt{5^2}$$

Since
$$\sqrt{x^2} = |x|$$
,

Since
$$\sqrt{x^2} = |x|$$
,
 $\sqrt{5^2} = |5|$

$$= 5$$

b)
$$\sqrt{(-4)^2}$$

Since
$$\sqrt{x^2} = |x|$$
,
 $\sqrt{(-4)^2} = |-4|$

c)
$$\sqrt{10.1^2}$$

Since
$$\sqrt{x^2} = |x|$$
,
 $\sqrt{10.1^2} = |10.1$
= 10.1

d)
$$\sqrt{(-11.4)^2}$$

nce
$$\sqrt{x^2} = |x|$$
, Since $\sqrt{x^2} = |x|$,
 $\sqrt{10.1^2} = |10.1|$ $\sqrt{(-11.4)^2} = |-11.4|$
= 10.1 = 11.4

В

7. a) Determine each absolute value.

$$|-11|, |12|, |0|, |4|, |-5|$$

$$|-11| = 11$$
 $|12| = 12$
 $|4| = 4$ $|-5| = 5$

$$|0| = 0$$

b) Order the numbers in part a from least to greatest. Show the solution on a number line.

From least to greatest:

That is,
$$|0| < |4| < |-5| < |-11| < |12|$$

8. For each pair of numbers, write two expressions to represent the distance between the numbers on a number line, then determine this distance.

a)
$$-2\frac{3}{4}$$
 and $5\frac{1}{4}$

$$\left|-2\frac{3}{4} - 5\frac{1}{4}\right|$$
 and $\left|5\frac{1}{4} - \left(-2\frac{3}{4}\right)\right|$, or $\left|5\frac{1}{4} + 2\frac{3}{4}\right|$

$$\left|-2\frac{3}{4} - 5\frac{1}{4}\right| = \left|-\frac{11}{4} - \frac{21}{4}\right|$$

$$= \left|-\frac{32}{4}\right|$$

$$= \left|-8\right|$$

The numbers are 8 units apart on a number line.

b)
$$-5\frac{3}{5}$$
 and $-3\frac{7}{10}$
 $\left|-5\frac{3}{5} - \left(-3\frac{7}{10}\right)\right|$, or $\left|-5\frac{3}{5} + 3\frac{7}{10}\right|$,
and $\left|-3\frac{7}{10} - \left(-5\frac{3}{5}\right)\right|$, or $\left|-3\frac{7}{10} + 5\frac{3}{5}\right|$
 $\left|-5\frac{3}{5} + 3\frac{7}{10}\right| = \left|-\frac{28}{5} + \frac{37}{10}\right|$
 $= \left|-\frac{56}{10} + \frac{37}{10}\right|$
 $= \left|-\frac{19}{10}\right|$
 $= \frac{19}{10}$, or $1\frac{9}{10}$

The numbers are $1\frac{9}{10}$ units apart on a number line.

c) 12.47 and -8.23

$$|12.47 - (-8.23)|$$
, or $|12.47 + 8.23|$, and $|-8.23 - 12.47|$
 $|12.47 + 8.23| = |20.7|$
 $= 20.7$

The numbers are 20.7 units apart on a number line.

9. Order the absolute values of the numbers in this set from greatest to least. Describe the strategy you used.

$$8.5, -8\frac{1}{3}, -10.2, -0.2, 0.1, 9.8$$

$$\begin{vmatrix} 8.5 \end{vmatrix} = 8.5$$
 $\begin{vmatrix} -8\frac{1}{3} \end{vmatrix} = 8\frac{1}{3}$ $\begin{vmatrix} -10.2 \end{vmatrix} = 10.2$ $\begin{vmatrix} -0.2 \end{vmatrix} = 0.2$ $\begin{vmatrix} 0.1 \end{vmatrix} = 0.1$ $\begin{vmatrix} 9.8 \end{vmatrix} = 9.8$

From greatest to least:

$$10.2 > 9.8 > 8.5 > 8\frac{1}{3} > 0.2 > 0.1$$

That is,
$$|-10.2|$$
, $|9.8|$, $|8.5|$, $|-8\frac{1}{3}|$, $|-0.2|$, $|0.1|$

I determined the absolute value of each number, then ordered the results from greatest to least.

10. The square of a number is 36. What is the absolute value of the number? Show your reasoning.

$$36 = 62$$

$$\sqrt{36} = \sqrt{62}$$

$$= |6|$$

$$= 6$$

$$36 = (-6)2$$

$$\sqrt{36} = \sqrt{(-6)2}$$

$$= |-6|$$

So, the absolute value of the number is 6.

11. Evaluate.

a)
$$\sqrt{\left(3\frac{1}{8}\right)^2}$$

$$= \left|3\frac{1}{8}\right|$$

$$= 3\frac{1}{8}$$
b) $\sqrt{\left(-2\frac{5}{6}\right)^2}$

$$= \left|-2\frac{5}{6}\right|$$

$$= 2\frac{5}{6}$$

c)
$$\sqrt{(9-11)^2}$$

= $\sqrt{(-2)^2}$
= $|-2|$
= 2

d)
$$\sqrt{(13.5 - 16.1)^2}$$

= $\sqrt{(-2.6)^2}$
= $|-2.6|$
= 2.6

12. Evaluate.

a)
$$|5(4) - 3|$$

= $|20 - 3|$
= $|17|$
= 17

c)
$$10 - |5 - 8|$$

= $10 - |-3|$
= $10 - 3$
= 7

d)
$$|6 + (-10)| - |5 - 7|$$

= $|-4| - |-2|$
= 4 - 2
= 2

e)
$$3|-2| - 4|3|$$

= 3(2) - 4(3)
= 6 - 12
= -6

f)
$$-3|4 - 1| + 2|1 - 4|$$

= $-3|3| + 2|-3|$
= $-3(3) + 2(3)$
= $-9 + 6$
= -3

13. Evaluate.

a)
$$\sqrt{(5.1 - 2.3)^2}$$

= $\sqrt{2.8^2} - |2.8|$
= $|2.8| - |2.8|$
= 0

a)
$$\sqrt{(5.1 - 2.3)^2} - |5.1 - 2.3|$$
 b) $5.1 - 2.3 - |5.1 - 2.3|$
= $\sqrt{2.8^2} - |2.8|$ = $2.8 - |2.8|$ = $2.8 - 2.8$ = 0

c)
$$\frac{|2 - (-8)|}{|3| - |-2|}$$

= $\frac{|10|}{3 - 2}$
= $\frac{10}{1}$
= 10

d)
$$|5 - 4|(5 + 4) - 2(5 + 4)$$

= $|1|(9) - 2(9)$
= $1(9) - 18$
= $9 - 18$
= -9

e)
$$\frac{2}{3} \left| -\frac{5}{8} - \frac{1}{4} \right|$$

= $\frac{2}{3} \left| -\frac{5}{8} - \frac{2}{8} \right|$
= $\frac{2}{3} \left| -\frac{7}{8} \right|$
= $\frac{2}{3} \left(\frac{7}{8} \right)$
= $\frac{7}{12}$

f)
$$\left| 1\frac{3}{4} - 2\frac{1}{2} \right| - \left| \frac{3}{4} - \frac{1}{2} \right|$$

= $\left| \frac{7}{4} - \frac{5}{2} \right| - \left| \frac{3}{4} - \frac{2}{4} \right|$
= $\left| \frac{7}{4} - \frac{10}{4} \right| - \left| \frac{1}{4} \right|$
= $\left| -\frac{3}{4} \right| - \frac{1}{4}$
= $\frac{3}{4} - \frac{1}{4}$
= $\frac{2}{4}$, or $\frac{1}{2}$

14. Evaluate each expression for the given value of x.

a)
$$|x^2 + 6x - 5|, x = 2$$

= $|2^2 + 6(2) - 5|$
= $|4 + 12 - 5|$
= $|11|$
= 11

b)
$$|-3x^2 + 7x + 1|$$
, $x = 3$
= $|-3(3)^2 + 7(3) + 1|$
= $|-27 + 21 + 1|$
= $|-5|$
= 5

c)
$$|x^3 - 5x - 2|, x = -3$$

= $|(-3)^3 - 5(-3) - 2|$
= $|-27 + 15 - 2|$
= $|-14|$
= 14
d) $|5x^3 + 2x + 7|, x = -1$
= $|5(-1)^3 + 2(-1) + 7|$
= $|-5 - 2 + 7|$
= $|0|$
= 0

d)
$$|5x^3 + 2x + 7|, x = -1$$

= $|5(-1)^3 + 2(-1) + 7|$
= $|-5 - 2 + 7|$
= $|0|$
= 0

C

15. Two integers, a and b, are between -5 and 5. The sum of the absolute values of the integers is 4. What might the integers be? How many answers are possible?

Integers between -5 and 5 are: -4, -3, -2, -1, 0, 1, 2, 3, 4

So, I test all pairs of these integers using the equation above. Possible pairs of integers are: a = 4, b = 0; a = 3, b = 1; a = 2, b = 2; a = 1, b = 3; a = 0, b = 4; a = -4, b = 0; a = -3, b = -1; a = -2,

b = -2; a = -1, b = -3; a = 0, b = -4; a = -3, b = 1; a = -1, b = 3; a = 3, b = -1; a = 1, b = -3; a = -2, b = 2; a = 2, b = -2

There are 16 possible answers.

16. When 7 is added to an integer, *x*, the absolute value of the sum is 12. Determine a value for *x*. How many values of *x* are possible? Show what you did to solve the problem.

Write, then solve an equation: |x + 7| = 12Since |12| = 12 and |-12| = 12, then, x + 7 = 12 or x + 7 = -12 x = 5 x = -19So, two values of x are possible: 5 or -19