Lesson 2.3 Exercises, pages 114–119

3. a) Simplify each radical, if possible.

b) Group the radicals in part a into sets of like radicals.

All radicals have index 2. Radicals with radicand 2: $3\sqrt{2}$, $2\sqrt{2}$, $4\sqrt{2}$, $3\sqrt{2}$; that is, $3\sqrt{2}$, $\sqrt{8}$, $\sqrt{32}$, $\sqrt{18}$ Radicals with radicand 3: $3\sqrt{3}$, $2\sqrt{3}$, $4\sqrt{3}$; that is, $\sqrt{27}$, $2\sqrt{3}$, $\sqrt{48}$ **4.** Simplify by adding or subtracting like terms.

a)
$$3\sqrt{2} + 2\sqrt{2} - 5\sqrt{2}$$

= $(3 + 2 - 5)\sqrt{2}$
= 0
b) $\sqrt{108} - 2\sqrt{3} - \sqrt{75}$
= $\sqrt{36 \cdot 3} - 2\sqrt{3} - \sqrt{25 \cdot 3}$
= $6\sqrt{3} - 2\sqrt{3} - 5\sqrt{3}$
= $-\sqrt{3}$

c)
$$5\sqrt{7} + 2\sqrt{5} - \sqrt{28} + \sqrt{45}$$

= $5\sqrt{7} + 2\sqrt{5} - \sqrt{4 \cdot 7} + \sqrt{9 \cdot 5}$
= $5\sqrt{7} + 2\sqrt{5} - \sqrt{4 \cdot 7} + \sqrt{9 \cdot 5}$
= $\sqrt[3]{8 \cdot 2} + \sqrt[3]{125 \cdot 3} - 3\sqrt[3]{2}$
= $3\sqrt{7} + 2\sqrt{5} - 2\sqrt{7} + 3\sqrt{5}$
= $2\sqrt[3]{2} + 5\sqrt[3]{3} - 3\sqrt[3]{2}$
= $-\sqrt[3]{2} + 5\sqrt[3]{3}$

a)
$$6\sqrt{x} - 4\sqrt{x} + 2\sqrt{x} + \sqrt{x}, x \ge 0$$

= $(6 - 4 + 2 + 1)\sqrt{x}$
= $5\sqrt{x}$

b)
$$\sqrt{4a} + \sqrt{16a} - \sqrt{9a}, a \ge 0$$

 $= \sqrt{4 \cdot a} + \sqrt{16 \cdot a} - \sqrt{9 \cdot a}$
 $= 2\sqrt{a} + 4\sqrt{a} - 3\sqrt{a}$
 $= 3\sqrt{a}$
c) $\sqrt[3]{27x^2} - \sqrt[3]{8x^2} + \sqrt[3]{64x^2}, x \in \mathbb{R}$
 $= \sqrt[3]{27 \cdot x^2} - \sqrt[3]{8 \cdot x^2} + \sqrt[3]{64 \cdot x^2}$

 $= 3\sqrt[3]{x^2} - 2\sqrt[3]{x^2} + 4\sqrt[3]{x^2}$

 $= 5\sqrt[3]{x^2}$

В

6. Explain why it is necessary to write $\sqrt[4]{x^4}$ as |x|.

 $\sqrt[4]{x^4}$ is defined for $x \in \mathbb{R}$. The radical sign indicates the principal root, so the value of $\sqrt[4]{x^4}$ cannot be negative. Although x^4 is always positive or zero, x can be negative. So, it is necessary to write $\sqrt[4]{x^4}$ as |x|.

7. Identify the values of the variables for which each radical is defined, then simplify.

a)
$$7\sqrt{-x} + 15\sqrt{-x} - 13\sqrt{-x}$$

The radicand cannot be negative, so $-x \ge 0$; that is, $x \le 0$. $7\sqrt{-x} + 15\sqrt{-x} - 13\sqrt{-x} = (7 + 15 - 13)\sqrt{-x}$ $= 9\sqrt{-x}$ **b**) $\sqrt{28m^4n} + m^2\sqrt{63n}$

The radicand cannot be negative. Since $m^4 \ge 0$, $m \in \mathbb{R}$. n cannot be negative, so $n \ge 0$. $\sqrt{28} m^4 n + m^2 \sqrt{63n} = \sqrt{4 \cdot 7 \cdot m^4 \cdot n} + m^2 \sqrt{9 \cdot 7 \cdot n}$ $= 2m^2 \sqrt{7n} + 3m^2 \sqrt{7n}$ $= 5m^2 \sqrt{7n}$

c)
$$4\sqrt[3]{2p^4q} - 6p\sqrt[3]{2pq}$$

The cube root of a number is defined for all real numbers. So, each radical is defined for $p, q \in \mathbb{R}$.

$$4\sqrt[3]{2p^4q} - 6p\sqrt[3]{2pq} = 4\sqrt[3]{2 \cdot p^3 \cdot pq} - 6p\sqrt[3]{2pq} \\= 4p\sqrt[3]{2pq} - 6p\sqrt[3]{2pq} \\= -2p\sqrt[3]{2pq}$$

a)
$$\sqrt{5b} + 4\sqrt{5b} - 3\sqrt[3]{5b} - 2\sqrt{5b}, b \ge 0$$

= $\sqrt{5b} + 4\sqrt{5b} - 2\sqrt{5b} - 3\sqrt[3]{5b}$
= $3\sqrt{5b} - 3\sqrt[3]{5b}$

b)
$$3\sqrt{x^3} + 5\sqrt{2x} - \sqrt{4x^3}, x \ge 0$$

= $3\sqrt{x^2 \cdot x} + 5\sqrt{2x} - \sqrt{4 \cdot x^2 \cdot x}$
= $3x\sqrt{x} + 5\sqrt{2x} - 2x\sqrt{x}$
= $x\sqrt{x} + 5\sqrt{2x}$

c)
$$5e\sqrt{24e^3} - 7\sqrt{54e^5} + e^2\sqrt{6e} + 6e, e \ge 0$$

= $5e\sqrt{4 \cdot 6 \cdot e^2 \cdot e} - 7\sqrt{9 \cdot 6 \cdot e^4 \cdot e} + e^2\sqrt{6e} + 6e$
= $5e(2e)\sqrt{6e} - 7(3e^2)\sqrt{6e} + e^2\sqrt{6e} + 6e$
= $10e^2\sqrt{6e} - 21e^2\sqrt{6e} + e^2\sqrt{6e} + 6e$
= $-10e^2\sqrt{6e} + 6e$

$$d) \sqrt[3]{16v^5} + \sqrt[3]{3w^4} + 2w\sqrt[3]{24w} - 5v\sqrt[3]{54v^2}, v, w \in \mathbb{R}$$

= $\sqrt[3]{8 \cdot 2 \cdot v^3 \cdot v^2} + \sqrt[3]{3 \cdot w^3 \cdot w} + 2w\sqrt[3]{8 \cdot 3 \cdot w} - 5v\sqrt[3]{27 \cdot 2 \cdot v^2}$
= $2v\sqrt[3]{2v^2} + w\sqrt[3]{3w} + 2w(2)\sqrt[3]{3w} - 5v(3)\sqrt[3]{2v^2}$
= $2v\sqrt[3]{2v^2} + w\sqrt[3]{3w} + 4w\sqrt[3]{3w} - 15v\sqrt[3]{2v^2}$
= $-13v\sqrt[3]{2v^2} + 5w\sqrt[3]{3w}$

9. A square with area 24 square units is placed beside a square with area 50 square units. In simplest form, write a radical expression for the perimeter of the shape formed.

The side length of a square is the square root of its area. Small square: Large square: Its area is 24, so its side length is $\sqrt{24}$. The perimeter of the shape formed consists of 3 sides of each square and the length that is the difference in their side lengths. Perimeter of shape formed $= 3\sqrt{24} + 3\sqrt{50} + (\sqrt{50} - \sqrt{24})$ $= 3\sqrt{24} + 3\sqrt{50} + \sqrt{50} - \sqrt{24}$ $= 2\sqrt{24} + 4\sqrt{50}$ $= 2\sqrt{4 \cdot 6} + 4\sqrt{25 \cdot 2}$ $= 4\sqrt{6} + 20\sqrt{2}$

10. Two squares are enclosed in a large square as shown. The area of the smallest square is *A* square units. The area of the middle square is 4*A* square units. Determine the area and perimeter of the shaded region in terms of *A*.

_				
_		4	Л	
	4	4	А	
_				

The side length of a square is the square root of its area. So, the side length of the small square is: \sqrt{A} units The side length of the middle square is: $\sqrt{4A}$, or $2\sqrt{A}$ units The side length of the large square is the sum of the side lengths of the other 2 squares: $\sqrt{A} + 2\sqrt{A}$, or $3\sqrt{A}$ Area of shaded region = area of large square - area of small square - area of middle square = $(3\sqrt{A})^2 - A - 4A$ = 9A - 5A= 4A

From the diagram, the length of 2 grid squares is \sqrt{A} . The perimeter of the shaded region is the length of 20 grid squares. So, perimeter = 20 grid squares

= $10 \cdot (2 \text{ grid squares})$ = $10\sqrt{A}$ **11.** In right \triangle ABC, AB has length

С

3 units and AC has length 6 units. A congruent triangle is placed adjacent to \triangle ABC as shown. Determine the perimeter of the shape formed.

Use the Pythagorean Theorem in $\triangle ABC$ to determine the length of BC. $(AC)^2 = (BC)^2 + (AB)^2$ $6^2 = (BC)^2 + 3^2$ $27 = (BC)^2$ $\sqrt{27} = BC$ $3\sqrt{3} = BC$ The perimeter of each triangle is: $6 + 3 + 3\sqrt{3} = 9 + 3\sqrt{3}$ BE = AB = 3So, the perimeter of the shape formed is: 2 times the perimeter of $\triangle ABC - 2$ times BE $= 2(9 + 3\sqrt{3}) - 2(3)$ $= 18 + 6\sqrt{3} - 6$ $= 12 + 6\sqrt{3}$ So, the perimeter of the shape formed is $(12 + 6\sqrt{3})$ units.

12. Determine whether △EDG is a right triangle. How did you find out?

Use the Pythagorean Theorem

in right ΔDEF to determine

Use the Pythagorean Theorem in right Δ DFG to determine the length of DF.

the length of DF.the length of ED. $(DG)^2 = (FG)^2 + (DF)^2$ $(ED)^2 = (EF)^2 + (DF)^2$ $(6\sqrt{5})^2 = (3\sqrt{12})^2 + (DF)^2$ $(ED)^2 = (11\sqrt{3} - 3\sqrt{12})^2 + (6\sqrt{2})^2$ $180 = 108 + (DF)^2$ $(ED)^2 = 75 + 72$ $(DF)^2 = 72$ $(ED)^2 = 147$ $DF = \sqrt{72}$ $ED = \sqrt{147}$ $DF = 6\sqrt{2}$ $ED = 7\sqrt{3}$

To determine whether \triangle EDG is a right triangle, use the Pythagorean Theorem to check whether (EG)² = (ED)² + (DG)²

L.S. =
$$(EG)^2$$

= $(11\sqrt{3})^2$
= 363
R.S. = $(ED)^2 + (DG)^2$
= $(7\sqrt{3})^2 + (6\sqrt{5})^2$
= $147 + 180$
= 327

Since L.S. \neq R.S., \triangle EDG is not a right triangle.

13. Determine if there are any values of *x* and *y* such that $\sqrt{x + y}$ and $\sqrt{x} + \sqrt{y}$ are equal. Explain your reasoning.

 $x, y \ge 0$ $\sqrt{x + y} = \sqrt{x} + \sqrt{y}$ $(\sqrt{x + y})^2 = (\sqrt{x} + \sqrt{y})^2$ $x + y = x + 2\sqrt{xy} + y$ $2\sqrt{xy} = 0$

For xy = 0, x = 0, or y = 0, or both x = 0 and y = 0So, there are values of x and y such that $\sqrt{x + y} = \sqrt{x} + \sqrt{y}$.