Lesson 2.3 Exercises, pages 114-119

A

3. a) Simplify each radical, if possible.

$$
\begin{aligned}
& \begin{array}{llll}
\sqrt{27} & 3 \sqrt{2} & \sqrt{8} & \sqrt{32}
\end{array} \\
& \sqrt{27}=\sqrt{9 \cdot 3} \quad 3 \sqrt{2} \quad \sqrt{8}=\sqrt{4 \cdot 2} \quad \sqrt{32}=\sqrt{16 \cdot 2} \\
& =3 \sqrt{3}=2 \sqrt{2}=4 \sqrt{2} \\
& \begin{array}{llll}
\sqrt{6} & 2 \sqrt{3} & \sqrt{48} & \sqrt{18}
\end{array} \\
& \sqrt{6} \quad 2 \sqrt{3} \quad \sqrt{48}=\sqrt{16 \cdot 3} \quad \sqrt{18}=\sqrt{9 \cdot 2} \\
& =4 \sqrt{3}=3 \sqrt{2}
\end{aligned}
$$

b) Group the radicals in part a into sets of like radicals.

All radicals have index 2.
Radicals with radicand $2: 3 \sqrt{2}, 2 \sqrt{2}, 4 \sqrt{2}, 3 \sqrt{2}$; that is,

$$
3 \sqrt{2}, \sqrt{8}, \sqrt{32}, \sqrt{18}
$$

Radicals with radicand $3: 3 \sqrt{3}, 2 \sqrt{3}, 4 \sqrt{3}$; that is,

$$
\sqrt{27}, 2 \sqrt{3}, \sqrt{48}
$$

4. Simplify by adding or subtracting like terms.
a) $3 \sqrt{2}+2 \sqrt{2}-5 \sqrt{2}$

$$
=(3+2-5) \sqrt{2}
$$

$$
=0
$$

$$
\text { b) } \sqrt{108}-2 \sqrt{3}-\sqrt{75}
$$

$$
=\sqrt{36 \cdot 3}-2 \sqrt{3}-\sqrt{25 \cdot 3}
$$

$$
=6 \sqrt{3}-2 \sqrt{3}-5 \sqrt{3}
$$

$$
=-\sqrt{3}
$$

c) $5 \sqrt{7}+2 \sqrt{5}-\sqrt{28}+\sqrt{45}$
$=5 \sqrt{7}+2 \sqrt{5}-\sqrt{4 \cdot 7}+\sqrt{9 \cdot 5}$
$=5 \sqrt{7}+2 \sqrt{5}-2 \sqrt{7}+3 \sqrt{5}$
$=3 \sqrt{7}+5 \sqrt{5}$
d) $\sqrt[3]{16}+\sqrt[3]{375}-3 \sqrt[3]{2}$
$=\sqrt[3]{8 \cdot 2}+\sqrt[3]{125 \cdot 3}-3 \sqrt[3]{2}$
$=2 \sqrt[3]{2}+5 \sqrt[3]{3}-3 \sqrt[3]{2}$
$=-\sqrt[3]{2}+5 \sqrt[3]{3}$
5. Simplify.
a) $6 \sqrt{x}-4 \sqrt{x}+2 \sqrt{x}+\sqrt{x}, x \geq 0$

$$
\begin{aligned}
& =(6-4+2+1) \sqrt{x} \\
& =5 \sqrt{x}
\end{aligned}
$$

b) $\sqrt{4 a}+\sqrt{16 a}-\sqrt{9 a}, a \geq 0$

$$
\begin{aligned}
& =\sqrt{4 \cdot a}+\sqrt{16 \cdot a}-\sqrt{9 \cdot a} \\
& =2 \sqrt{a}+4 \sqrt{a}-3 \sqrt{a} \\
& =3 \sqrt{a}
\end{aligned}
$$

c) $\sqrt[3]{27 x^{2}}-\sqrt[3]{8 x^{2}}+\sqrt[3]{64 x^{2}}, x \in \mathbb{R}$
$=\sqrt[3]{27 \cdot x^{2}}-\sqrt[3]{8 \cdot x^{2}}+\sqrt[3]{64 \cdot x^{2}}$
$=3 \sqrt[3]{x^{2}}-2 \sqrt[3]{x^{2}}+4 \sqrt[3]{x^{2}}$
$=5 \sqrt[3]{x^{2}}$

B

6. Explain why it is necessary to write $\sqrt[4]{x^{4}}$ as $|x|$.
$\sqrt[4]{x^{4}}$ is defined for $x \in \mathbb{R}$. The radical sign indicates the principal root, so the value of $\sqrt[4]{x^{4}}$ cannot be negative. Although x^{4} is always positive or zero, x can be negative. So, it is necessary to write $\sqrt[4]{x^{4}}$ as $|x|$.
7. Identify the values of the variables for which each radical is defined, then simplify.
a) $7 \sqrt{-x}+15 \sqrt{-x}-13 \sqrt{-x}$

The radicand cannot be negative, so $-x \geq 0$; that is, $x \leq 0$.

$$
\begin{aligned}
7 \sqrt{-x}+15 \sqrt{-x}-13 \sqrt{-x} & =(7+15-13) \sqrt{-x} \\
& =9 \sqrt{-x}
\end{aligned}
$$

b) $\sqrt{28 m^{4} n}+m^{2} \sqrt{63 n}$

The radicand cannot be negative.
Since $m^{4} \geq 0, m \in \mathbb{R}$.
n cannot be negative, so $n \geq 0$.

$$
\begin{aligned}
\sqrt{28 m^{4} n}+m^{2} \sqrt{63 n} & =\sqrt{4 \cdot 7 \cdot m^{4} \cdot n}+m^{2} \sqrt{9 \cdot 7 \cdot n} \\
& =2 m^{2} \sqrt{7 n}+3 m^{2} \sqrt{7 n} \\
& =5 m^{2} \sqrt{7 n}
\end{aligned}
$$

c) $4 \sqrt[3]{2 p^{4} q}-6 p \sqrt[3]{2 p q}$

The cube root of a number is defined for all real numbers. So, each radical is defined for $p, q \in \mathbb{R}$.

$$
\begin{aligned}
4 \sqrt[3]{2 p^{4} q}-6 p \sqrt[3]{2 p q} & =4 \sqrt[3]{2 \cdot p^{3} \cdot p q}-6 p \sqrt[3]{2 p q} \\
& =4 p \sqrt[3]{2 p q}-6 p \sqrt[3]{2 p q} \\
& =-2 p \sqrt[3]{2 p q}
\end{aligned}
$$

8. Simplify.
a) $\sqrt{5 b}+4 \sqrt{5 b}-3 \sqrt[3]{5 b}-2 \sqrt{5 b}, b \geq 0$
$=\sqrt{5 b}+4 \sqrt{5 b}-2 \sqrt{5 b}-3 \sqrt[3]{5 b}$
$=3 \sqrt{5 b}-3 \sqrt[3]{5 b}$
b) $3 \sqrt{x^{3}}+5 \sqrt{2 x}-\sqrt{4 x^{3}}, x \geq 0$
$=3 \sqrt{x^{2} \cdot x}+5 \sqrt{2 x}-\sqrt{4 \cdot x^{2} \cdot x}$
$=3 x \sqrt{x}+5 \sqrt{2 x}-2 x \sqrt{x}$
$=x \sqrt{x}+5 \sqrt{2 x}$
c) $5 e \sqrt{24 e^{3}}-7 \sqrt{54 e^{5}}+e^{2} \sqrt{6 e}+6 e, e \geq 0$
$=5 e \sqrt{4 \cdot 6 \cdot e^{2} \cdot e}-7 \sqrt{9 \cdot 6 \cdot e^{4} \cdot e}+e^{2} \sqrt{6 e}+6 e$
$=5 e(2 e) \sqrt{6 e}-7\left(3 e^{2}\right) \sqrt{6 e}+e^{2} \sqrt{6 e}+6 e$
$=10 e^{2} \sqrt{6 e}-21 e^{2} \sqrt{6 e}+e^{2} \sqrt{6 e}+6 e$
$=-10 e^{2} \sqrt{6 e}+6 e$
d) $\sqrt[3]{16 v^{5}}+\sqrt[3]{3 w^{4}}+2 w \sqrt[3]{24 w}-5 v \sqrt[3]{54 v^{2}}, v, w \in \mathbb{R}$

$$
\begin{aligned}
& =\sqrt[3]{8 \cdot 2 \cdot v^{3} \cdot v^{2}}+\sqrt[3]{3 \cdot w^{3} \cdot w}+2 w \sqrt[3]{8 \cdot 3 \cdot w}-5 v \sqrt[3]{27 \cdot 2 \cdot v^{2}} \\
& =2 v \sqrt[3]{2 v^{2}}+w \sqrt[3]{3 w}+2 w(2) \sqrt[3]{3 w}-5 v(3) \sqrt[3]{2 v^{2}} \\
& =2 v \sqrt[3]{2 v^{2}}+w \sqrt[3]{3 w}+4 w \sqrt[3]{3 w}-15 v \sqrt[3]{2 v^{2}} \\
& =-13 v \sqrt[3]{2 v^{2}}+5 w \sqrt[3]{3 w}
\end{aligned}
$$

9. A square with area 24 square units is placed beside a square with area 50 square units. In simplest form, write a radical expression for the perimeter of the shape formed.

The side length of a square is the square root of its area.

Small square:
Its area is 24 , so its side
Large square:
Its area is 50, so its side length is
length is $\sqrt{24}$.
$\sqrt{50}$.

The perimeter of the shape formed consists of 3 sides of each square and the length that is the difference in their side lengths.
Perimeter of shape formed $=3 \sqrt{24}+3 \sqrt{50}+(\sqrt{50}-\sqrt{24})$

$$
\begin{aligned}
& =3 \sqrt{24}+3 \sqrt{50}+\sqrt{50}-\sqrt{24} \\
& =2 \sqrt{24}+4 \sqrt{50} \\
& =2 \sqrt{4 \cdot 6}+4 \sqrt{25 \cdot 2} \\
& =4 \sqrt{6}+20 \sqrt{2}
\end{aligned}
$$

10. Two squares are enclosed in a large square as shown. The area of the smallest square is A square units. The area of the middle square is $4 A$ square units. Determine the area and perimeter of the shaded region in terms of A.

The side length of a square is the square root of its area.
So, the side length of the small square is: \sqrt{A} units
The side length of the middle square is: $\sqrt{4 A}$, or $2 \sqrt{A}$ units
The side length of the large square is the sum of the side lengths of the other 2 squares: $\sqrt{A}+2 \sqrt{A}$, or $3 \sqrt{A}$
Area of shaded region
$=$ area of large square - area of small square - area of middle square
$=(3 \sqrt{A})^{2}-A-4 A$
$=9 A-5 A$
$=4 A$
From the diagram, the length of 2 grid squares is \sqrt{A}.
The perimeter of the shaded region is the length of 20 grid squares.
So, perimeter $=20$ grid squares

$$
\begin{aligned}
& =10 \cdot(2 \text { grid squares }) \\
& =10 \sqrt{A}
\end{aligned}
$$

11. In right $\triangle A B C, A B$ has length 3 units and AC has length 6 units. A congruent triangle is placed adjacent to $\triangle A B C$ as shown. Determine the perimeter of the shape formed.

Use the Pythagorean Theorem in $\triangle A B C$ to determine the length of $B C$.

$$
\begin{aligned}
(A C)^{2} & =(B C)^{2}+(A B)^{2} \\
6^{2} & =(B C)^{2}+3^{2} \\
27 & =(B C)^{2} \\
\sqrt{27} & =B C \\
3 \sqrt{3} & =B C
\end{aligned}
$$

The perimeter of each triangle is: $6+3+3 \sqrt{3}=9+3 \sqrt{3}$
$B E=A B=3$
So, the perimeter of the shape formed is:
2 times the perimeter of $\triangle \mathrm{ABC}-2$ times BE
$=2(9+3 \sqrt{3})-2(3)$
$=18+6 \sqrt{3}-6$
$=12+6 \sqrt{3}$
So, the perimeter of the shape formed is $(12+6 \sqrt{3})$ units.
12. Determine whether $\triangle E D G$ is a right triangle. How did you find out?

Use the Pythagorean Theorem in right \triangle DFG to determine the length of $D F$.

$$
\begin{aligned}
(\mathrm{DG})^{2} & =(\mathrm{FG})^{2}+(\mathrm{DF})^{2} \\
(6 \sqrt{5})^{2} & =(3 \sqrt{12})^{2}+(\mathrm{DF})^{2} \\
180 & =108+(\mathrm{DF})^{2} \\
(\mathrm{DF})^{2} & =72 \\
\text { DF } & =\sqrt{72} \\
\text { DF } & =6 \sqrt{2}
\end{aligned}
$$

Use the Pythagorean Theorem in right \triangle DEF to determine the length of $E D$.
$(E D)^{2}=(E F)^{2}+(D F)^{2}$
$(E D)^{2}=(11 \sqrt{3}-3 \sqrt{12})^{2}+(6 \sqrt{2})^{2}$
$(E D)^{2}=75+72$
$(E D)^{2}=147$
$E D=\sqrt{147}$
$E D=7 \sqrt{3}$

To determine whether \triangle EDG is a right triangle, use the Pythagorean
Theorem to check whether $(E G)^{2}=(E D)^{2}+(D G)^{2}$

$$
\begin{array}{rlrl}
\text { L.S. } & =(E G)^{2} & \text { R.S. } & =(E D)^{2}+(D G)^{2} \\
& =(11 \sqrt{3})^{2} & & =(7 \sqrt{3})^{2}+(6 \sqrt{5})^{2} \\
& =363 & & =147+180 \\
& & =327
\end{array}
$$

Since L.S. \neq R.S., Δ EDG is not a right triangle.
13. Determine if there are any values of x and y such that $\sqrt{x+y}$ and $\sqrt{x}+\sqrt{y}$ are equal. Explain your reasoning.
$x, y \geq 0$

$$
\begin{aligned}
\sqrt{x+y} & =\sqrt{x}+\sqrt{y} \\
(\sqrt{x+y})^{2} & =(\sqrt{x}+\sqrt{y})^{2} \\
x+y & =x+2 \sqrt{x y}+y \\
2 \sqrt{x y} & =0
\end{aligned}
$$

For $x y=0, x=0$, or $y=0$, or both $x=0$ and $y=0$
So, there are values of x and y such that $\sqrt{x+y}=\sqrt{x}+\sqrt{y}$.

