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Lesson 2.3 Exercises, pages 114–119

3. a) Simplify each radical, if possible.

b) Group the radicals in part a into sets of like radicals.
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All radicals have index 2.

Radicals with radicand 2: , , , ; that is,

, , ,

Radicals with radicand 3: , , ; that is,
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4. Simplify by adding or subtracting like terms.

a) b)

c) d)

5. Simplify.

a) ,

b) ,

c) ,

6. Explain why it is necessary to write 

7. Identify the values of the variables for which each radical is defined,
then simplify.
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is defined for The radical sign indicates the principal root, so
the value of cannot be negative. Although x4 is always positive or zero,
x can be negative. So, it is necessary to write as .�x �

√
4 x4

√
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The radicand cannot be negative, so 

� 9
√

�x

� (7 � 15 � 13)
√

�x7
√

�x � 15
√

�x � 13
√

�x

�x » 0; that is, x ◊ 0.
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b)

c)

8. Simplify.

a)

b)

c)

d)
√
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√
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The radicand cannot be negative.
Since ,
n cannot be negative, so .
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The cube root of a number is defined for all real numbers. So, each
radical is defined for .
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√
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√
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9. A square with area 24 square units is placed 
beside a square with area 50 square units.
In simplest form, write a radical expression 
for the perimeter of the shape formed.

10. Two squares are enclosed in a large square 
as shown. The area of the smallest square 
is A square units. The area of the middle 
square is 4A square units. Determine the 
area and perimeter of the shaded region 
in terms of A. A

4A

The side length of a square is the square root of its area.
Small square: Large square:
Its area is 24, so its side Its area is 50, so its side length is
length is . .
The perimeter of the shape formed consists of 3 sides of each square and
the length that is the difference in their side lengths.
Perimeter of shape formed

 � 4
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4 # 6 � 4
√
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√

24
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√

24)

√
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The side length of a square is the square root of its area.
So, the side length of the small square is: units

The side length of the middle square is: units 
The side length of the large square is the sum of the side lengths of the
other 2 squares: , or 
Area of shaded region 
� area of large square � area of small square � area of middle square

From the diagram, the length of 2 grid squares is .
The perimeter of the shaded region is the length of 20 grid squares.
So, perimeter
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11. In right ABC, AB has length 
3 units and AC has length 6 units.
A congruent triangle is placed adjacent 
to ABC as shown. Determine the 
perimeter of the shape formed.

12. Determine whether is a 
right triangle. How did you 
find out?

E F G

D

3�12

6�5

11�3^EDG

^

A B
D

E

3

C

6

^

C

Use the Pythagorean Theorem in to determine the length of BC.

The perimeter of each triangle is:
BE � AB � 3
So, the perimeter of the shape formed is:
2 times the perimeter of ABC �2 times BE

So, the perimeter of the shape formed is units.(12 � 6
√

3)
� 12 � 6

√
3

� 18 � 6
√

3 � 6

� 2(9 � 3
√

3) � 2(3)
¢

6 � 3 � 3
√

3 � 9 � 3
√

3
 3
√

3 � BC

 
√

27 � BC

 27 � (BC)2

 62 � (BC)2 � 32

 (AC)2 � (BC)2 � (AB)2
¢ABC

DF.

To determine whether is a right triangle, use the Pythagorean
Theorem to check whether 

Since L.S. R.S., is not a right triangle.¢EDG�

 � 327
 � 147 � 180 � 363
 � (7

√
3)2 � (6

√
5)2 � (11

√
3)2

 R .S . � (ED)2 � (DG)2 L .S . � (EG)2

(EG)2 � (ED)2 � (DG)2
¢EDG

 ED � 7
√

3 DF � 6
√

2

 ED �
√

147 DF �
√

72

 (ED)2 � 147 (DF)2 � 72

 (ED)2 � 75 � 72 180 � 108 � (DF)2

 (ED)2 � (11
√

3 � 3
√

12)2 � (6
√

2)2 (6
√

5)2 � (3
√

12)2 � (DF)2

 (ED)2 � (EF)2 � (DF)2 (DG)2 � (FG)2 � (DF)2

the length of ED.the length of 
in right ¢DEF to determinein right ¢DFG to determine
Use the Pythagorean Theorem Use the Pythagorean Theorem 
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13. Determine if there are any values of x and y such that and
are equal. Explain your reasoning.

√
x +

√
y

√
x + y
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For xy � 0, x � 0, or y � 0, or both x � 0 and y � 0
So, there are values of x and y such that � .

√
x �

√
y

√
x � y

 2
√

xy � 0

 x � y � x � 2
√

xy � y

 (
√

x � y )2 � (
√

x �
√

y )2

 
√

x � y �
√

x �
√

y

x, y » 0
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