Lesson 2.5 Exercises, pages 145–152 Students should verify the solutions to all equations.

Α

4. Solve each equation. Verify the solution.

a)
$$\sqrt{3x} = 6, x \ge 0$$

 $(\sqrt{3x})^2 = 6^2$
 $3x = 36$
 $x = 12$
b) $2\sqrt{5x} = 10, x \ge 0$
 $\sqrt{5x} = 5$
 $(\sqrt{5x})^2 = 5^2$
 $5x = 25$
 $x = 5$

c)
$$42 = 7\sqrt{2x}, x \ge 0$$

 $6 = \sqrt{2x}$
 $(6)^2 = (\sqrt{2x})^2$
 $36 = 2x$
 $x = 18$
d) $-2\sqrt{6x} = -12, x \ge 0$
 $\sqrt{6x} = 6$
 $(\sqrt{6x})^2 = 6^2$
 $6x = 36$
 $x = 6$

5. Solve each equation. Verify the solution.

a) $\sqrt{x-2} = 5$	b) $\sqrt{3x+1} = 5$
$x - 2 \ge 0$; that is, $x \ge 2$	$3x + 1 \ge 0$; that is, $x \ge -\frac{1}{3}$
$(\sqrt{x-2})^2 = 5^2$	$(\sqrt{3x+1})^2 = 5^2$
x - 2 = 25	3x + 1 = 25
x = 27	3x = 24
	x = 8

c) $4 = \sqrt{2 - 7x}$	d) $3 = \sqrt{2x + 1}$
$2 - 7x \ge 0$; that is, $x \le \frac{2}{7}$	$2x + 1 \ge 0$; that is, $x \ge -\frac{1}{2}$
$4^2 = (\sqrt{2 - 7x})^2$	$3^2 = (\sqrt{2x+1})^2$
16 = 2 - 7x	9 = 2x + 1
14 = -7x	8 = 2x
x = -2	x = 4

e)
$$\sqrt{5x-9} - 2 = 7$$

f) $2\sqrt{1-3x} + 1 = 9$
 $5x - 9 \ge 0$; that is, $x \ge \frac{9}{5}$
 $\sqrt{5x-9} = 9$
 $(\sqrt{5x-9})^2 = (9)^2$
 $5x - 9 = 81$
 $5x = 90$
 $x = 18$
f) $2\sqrt{1-3x} + 1 = 9$
 $2\sqrt{1-3x} + 1 = 9$
 $2\sqrt{1-3x} = 8$
 $\sqrt{1-3x} = 4$
 $(\sqrt{1-3x})^2 = (4)^2$
 $1 - 3x = 16$
 $-3x = 15$
 $x = -5$

- **6.** Determine whether the given value of *x* is a root of the equation.
 - **a**) $\sqrt{2x+1} = 9; x = 16$

L.S. = $\sqrt{2(16)} + 1$ R.S. = 9 = $\sqrt{32} + 1$ = $4\sqrt{2} + 1$ Since L.S. \neq R.S., x = 16 is not a root of the equation.

b)
$$\sqrt{3x - 6} = 6$$
; $x = 14$
L.S. $= \sqrt{3(14) - 6}$ **R.S.** $= 6$
 $= \sqrt{36}$
 $= 6$
Since L.S. $=$ R.S., $x = 14$ is a root of the equation.

c)
$$9 = \sqrt{121 - 2x}$$
; $x = 20$
L.S. = 9 R.S. = $\sqrt{121 - 2(20)}$
= $\sqrt{81}$
= 9
Since L.S. = R.S., $x = 20$ is a root of the equation.

d)
$$\sqrt{2x-5} = \sqrt{3x-2}$$
; $x = -3$
Since $2x - 5 \ge 0$, Since $3x - 2 \ge 0$,
then $x \ge \frac{5}{2}$ then $x \ge \frac{2}{3}$
Since $x = -3$ does not lie in the set of possible values for x ,
 $x = -3$ is not a root.

e)
$$\sqrt{2x + 5} = \sqrt{3x + 2}$$
; $x = 3$
L.S. $= \sqrt{2(3) + 5}$ R.S. $= \sqrt{3(3) + 2}$
 $= \sqrt{11}$ $= \sqrt{11}$
Since L.S. $=$ R.S., $x = 3$ is a root of the equation.

7. Determine the root of each equation. Verify the solution.

В

a)
$$\sqrt{6x} = 2, x \ge 0$$

 $\sqrt{6x} = 2$
 $(\sqrt{6x})^2 = 2^2$
 $6x = 4$
 $x = \frac{4}{6}, \text{ or } \frac{2}{3}$
b) $2 = \sqrt{2x + 1}$
 $2x + 1 \ge 0$; that is, $x \ge -\frac{1}{2}$
 $2 = \sqrt{2x + 1}$
 $2^2 = (\sqrt{2x + 1})^2$
 $4 = 2x + 1$
 $3 = 2x$
 $x = \frac{3}{2}$

c)
$$3 - \sqrt{x} = -2, x \ge 0$$

 $-\sqrt{x} = -5$
 $\sqrt{x} = 5$
 $(\sqrt{x})^2 = 5^2$
 $x = 25$
d) $4 = \sqrt{-2x} + 3$
 $-2x \ge 0$; that is, $x \le 0$
 $4 = \sqrt{-2x} + 3$
 $1 = \sqrt{-2x}$
 $1^2 = (\sqrt{-2x})^2$
 $1 = -2x$
 $x = -\frac{1}{2}$

e)
$$1 - 3\sqrt{5x} = -3 - 2\sqrt{5x}$$
 f) $2 - 2\sqrt{3x} = 1 - \sqrt{3x}$
 $x \ge 0$
 $1 - 3\sqrt{5x} = -3 - 2\sqrt{5x}$ $x \ge 0$
 $2 - 2\sqrt{3x} = 1 - \sqrt{3x}$
 $4 = \sqrt{5x}$ $1 = \sqrt{3x}$
 $4^2 = (\sqrt{5x})^2$ $1^2 = (\sqrt{3x})^2$
 $16 = 5x$ $1 = 3x$
 $x = \frac{16}{5}$, or $3\frac{1}{5}$ $x = \frac{1}{3}$

8. The formula $V = \sqrt{PR}$ relates the potential difference across an electrical circuit, *V* volts, to the power, *P* watts, and the resistance, *R* ohms. The potential difference across a 40-W amplifier is 80 V. What is the resistance of the amplifier? How did you find out?

 $V = \sqrt{PR}$ Substitute: V = 80, P = 40 $80 = \sqrt{40R}$ $(80)^2 = (\sqrt{40R})^2$ 6400 = 40R R = 160The resistance of the amplifier is 160 ohms. **9.** Determine the root of each equation. Verify the solution.

a) $\frac{\sqrt{x}}{5} = 2$	b) $-2 = \frac{-\sqrt{2x}}{4}$
$x \ge 0$ $\frac{\sqrt{x}}{5} = 2$	$x \ge 0$ $-2 = \frac{-\sqrt{2x}}{4}$
$\sqrt{x} = 10$ $(\sqrt{x})^2 = 10^2$	$-8 = -\sqrt{2x}$ $8 = \sqrt{2x}$
<i>x</i> = 100	$8^{2} = (\sqrt{2x})^{2}$ 64 = 2x x = 32
c) $\frac{\sqrt{3x-2}}{2} = 1$	d) $\sqrt{x-7} = \frac{\sqrt{2x+4}}{2}$
$3x - 2 \ge 0$; that is, $x \ge \frac{2}{3}$ $\frac{\sqrt{3x - 2}}{2} = 1$	$x - 7 \ge 0$; that is, $x \ge 7$ $2x + 4 \ge 0$; that is, $x \ge -2$ So, for both radicals to be defined, $x \ge 7$
$\frac{2}{\sqrt{3x-2}} = 2$ $(\sqrt{3x-2})^2 = 2^2$	$\sqrt{x-7} = \frac{\sqrt{2x+4}}{2}$ $2\sqrt{x-7} = \sqrt{2x+4}$
3x - 2 = 4 $3x = 6$ $x = 2$	$(2\sqrt{x-7})^2 = (\sqrt{2x+4})^2$ 4(x - 7) = 2x + 4 4x - 28 = 2x + 4
	2x = 32 $x = 16$

10. Which of these equations have real roots? Justify your answers.

a)
$$2 = \sqrt{3x - 1}$$

 $3x - 1 \ge 0$; that is, $x \ge \frac{1}{3}$
 $2 = \sqrt{3x - 1}$
 $2^2 = (\sqrt{3x - 1})^2$
 $4 = 3x - 1$
 $5 = 3x$
 $x = \frac{5}{3}$
lies in the set of possible values for x. So, the equation has a real root.

b)
$$\sqrt{3x-1} + 5 = 2$$

$$3x - 1 \ge 0$$
; that is, $x \ge \frac{1}{3}$
 $\sqrt{3x - 1} + 5 = 2$
 $\sqrt{3x - 1} = -3$

The left side of the equation is greater than or equal to 0. The right side of the equation is negative, -3. So, no real solutions are possible. The equation has no real roots. c) $\sqrt{5x + 3} = \sqrt{3x + 1}$ $5x + 3 \ge 0$; that is, $x \ge -\frac{3}{5}$ $3x + 1 \ge 0$; that is, $x \ge -\frac{1}{3}$ So, for both radicals to be defined, $x \ge -\frac{1}{3}$ $\sqrt{5x + 3} = \sqrt{3x + 1}$ $(\sqrt{5x + 3})^2 = (\sqrt{3x + 1})^2$ 5x + 3 = 3x + 1 2x = -2 x = -1Since x = -1 does not lie in the set of possible values for x, the

Since x = -1 does not lie in the set of possible values for x, equation has no real roots.

d)
$$\sqrt{-3x + 7} = \sqrt{-2x + 9}$$

 $-3x + 7 \ge 0$; that is, $x \le \frac{7}{3}$
 $-2x + 9 \ge 0$; that is, $x \le \frac{9}{2}$
So, for both radicals to be defined, $x \le \frac{7}{3}$
 $\sqrt{-3x + 7} = \sqrt{-2x + 9}$
 $(\sqrt{-3x + 7})^2 = (\sqrt{-2x + 9})^2$
 $-3x + 7 = -2x + 9$
 $-2 = x$
Since $x = -2$ lies in the set of possible values for x, the equation has a real root.

11. The period, *P* seconds, of a pendulum is the time to complete one full swing. The period can be determined using the formula

 $P = 2\pi \sqrt{\frac{L}{9.8}}$, where *L* is the length of the pendulum in metres. Approximately how long should a pendulum be to complete one full swing in 2 s?

$$P = 2\pi \sqrt{\frac{l}{9.8}}$$
Substitute: $P = 2$

$$2 = 2\pi \sqrt{\frac{l}{9.8}}$$

$$\frac{1}{\pi} = \sqrt{\frac{l}{9.8}}$$

$$\left(\frac{1}{\pi}\right)^2 = \left(\sqrt{\frac{l}{9.8}}\right)^2$$

$$\frac{1}{\pi^2} = \frac{l}{9.8}$$

$$\frac{9.8}{\pi^2} = L$$

$$L = 0.9929...$$

The pendulum should be about 1 m long.

12. Which of these equations have real roots? Justify your answers.

a) $2\sqrt{x+8} = 3\sqrt{3x+1}$ **b**) $2\sqrt{x-8} = 3\sqrt{3x+1}$ $x - 8 \ge 0$; that is, $x \ge 8$ $x + 8 \ge 0$; that is, $x \ge -8$ $3x + 1 \ge 0$; that is, $x \ge -\frac{1}{3}$ $3x + 1 \ge 0$; that is, $x \ge -\frac{1}{3}$ So, for both radicals to be defined, So, for both radicals to be defined, $x \ge -\frac{1}{2}$ $x \ge 8$ $2\sqrt{x-8} = 3\sqrt{3x+1}$ $2\sqrt{x+8} = 3\sqrt{3x+1}$ $(2\sqrt{x-8})^2 = (3\sqrt{3x+1})^2$ $(2\sqrt{x+8})^2 = (3\sqrt{3x+1})^2$ 4(x - 8) = 9(3x + 1)4(x + 8) = 9(3x + 1)4x - 32 = 27x + 94x + 32 = 27x + 923x = -4123x = 23 $x = -\frac{41}{23}$ x = 1x = 1 lies in the set of possible values for x. So, the

Since $x = -\frac{41}{23}$ does not lie in the set of possible values for *x*, the equation has no real roots.

c) $2\sqrt{x + 8} = 3\sqrt{3x - 1}$ $x + 8 \ge 0$; that is, $x \ge -8$ $3x - 1 \ge 0$; that is, $x \ge \frac{1}{3}$ So, for both radicals to be defined, $x \ge \frac{1}{3}$ $2\sqrt{x + 8} = 3\sqrt{3x - 1}$ $(2\sqrt{x + 8})^2 = (3\sqrt{3x - 1})^2$ 4(x + 8) = 9(3x - 1) 4x + 32 = 27x - 9 23x = 41 $x = \frac{41}{23}$ $x = \frac{41}{23}$ lies in the set of possibly values for x. So, the equation

equation has a real root.

d)
$$2\sqrt{x-8} = 3\sqrt{3x-1}$$

 $x-8 \ge 0$; that is, $x \ge 8$
 $3x-1 \ge 0$; that is, $x \ge \frac{1}{3}$
So, for both radicals to be defined,
 $x \ge 8$
 $2\sqrt{x-8} = 3\sqrt{3x-1}$
 $(2\sqrt{x-8})^2 = (3\sqrt{3x-1})^2$
 $4(x-8) = 9(3x-1)$
 $4x-32 = 27x-9$
 $23x = -23$
 $x = -1$
Since $x = -1$ does not lie in the set
le of possible values for x, the equation
has no real roots.

13. A student solved the equation $2\sqrt{5 - 4x} = -4$ and determined that the root was $x = \frac{1}{4}$. Is the student correct? If the student is correct, explain why. If the student is incorrect, what is the correct solution?

$$5-4x \ge 0$$
; that is, $x \le \frac{3}{4}$

2

has a real root.

$$2\sqrt{5}-4x=-4$$

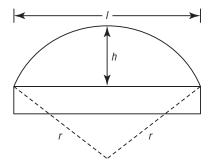
$$\sqrt{5-4x} = -$$

The left side of the equation is greater than or equal to 0. The right side of the equation is negative, -2. So, no real solutions are possible. The equation has no real roots. So, the student is incorrect. **14.** Write three radical equations that have a root of 4. Describe your strategy.

Start with the solution x = 4. Add the same number to both sides so that the number on the right side of the equation is a perfect square: 5 + x = 4 + 55 + x = 9Then take the square root of both sides: $\sqrt{5 + x} = \sqrt{9}$ Use mental math to check. The equation has a root of 4. Similarly, the equations $\sqrt{12 + x} = \sqrt{16}$ and $\sqrt{-3 + x} = \sqrt{1}$ have a root of 4.

15. The roof of a circular stadium is part of a sphere.

The formula $l = \sqrt{4h(2r - h)}$ relates the length of the stadium, *l* metres, to the maximum height, *h* metres, of the roof and the radius, *r* metres, of the sphere.



A stadium has length 160 m and maximum height 40 m. What is the radius of the sphere?

```
I = \sqrt{4h(2r - h)}Substitute: I = 160, h = 40

160 = \sqrt{4(40)(2r - 40)}

160 = \sqrt{320r - 6400}

(160)^2 = (\sqrt{320r - 6400})^2

25\ 600 = 320r - 6400

320r = 32\ 000

r = 100

The radius of the sphere is 100 m.
```

16. Earth approximates a sphere with radius 6370 km.

С

a) The formula for the surface area of a sphere is: $SA = 4\pi r^2$

To the nearest kilometre, determine the edge length of a cube with the same surface area as Earth.

```
SA = 4\pi r^2Substitute: r = 6370

SA = 4\pi (6370)^2

SA \doteq 509 904 363.8
The surface area of Earth is approximately 509 904 363.8 km<sup>2</sup>.

The formula for the surface area of a cube with edge length e kilometres is:

SA = 6e^2Substitute: SA = 509 904 363.8

509 904 363.8 = 6e^2

84 984 060.63 = e^2

\sqrt{84 984 060.63} = e

9218.6799... = e
The edge length of the cube is about 9219 km.
```

b) The formula for the volume of a sphere is: $V = \frac{4}{3}\pi r^3$

To the nearest kilometre, determine the edge length of a cube with the same volume as Earth.

 $V = \frac{4}{3}\pi r^{3}$ Substitute: r = 6370 $V = \frac{4}{3}\pi (6370)^{3}$ $V \doteq 1.082\ 696\ 932 \times 10^{12}$ The volume of Earth is approximately 1.082\ 696\ 932 \times 10^{12}\ km^{3}.
The formula for the volume of a cube with edge length *e* kilometres is: $V = e^{3}$ Substitute: $V = 1.082\ 696\ 932 \times 10^{12}$ $1.082\ 696\ 932 \times 10^{12} = e^{3}$ $\sqrt[3]{1.082\ 696\ 932 \times 10^{12}} = e$ $10\ 268.388\ 75... = e$ The edge length of the cube is about 10,268 km

The edge length of the cube is about 10 268 km.

17. Determine the root of each equation. Verify the solution. What strategy did you use?

a) 4 = $\sqrt[3]{8x}$	b) $\sqrt[3]{2x-5} = 3$	c) $2 = \sqrt[3]{2x+3} + 5$
$4^3 = (\sqrt[3]{8x})^3$	$(\sqrt[3]{2x-5})^3 = 3^3$	$-3 = \sqrt[3]{2x+3}$
64 = 8x	2x - 5 = 27	$(-3)^3 = (\sqrt[3]{2x+3})^3$
x = 8	2x = 32	-27 = 2x + 3
	<i>x</i> = 16	2x=-30
		x = -15

I isolated the radical, then cubed both sides of the equation to eliminate the radical sign. I then solved the equation for *x*, and verified my solution.