Lesson 2.5 Exercises, pages 145-152

Students should verify the solutions to all equations.
A
4. Solve each equation. Verify the solution.
a) $\sqrt{3 x}=6, x \geq 0$
$(\sqrt{3 x})^{2}=6^{2}$ $3 x=36$
$x=12$
b) $2 \sqrt{5 x}=10, x \geq 0$

$$
\begin{aligned}
\sqrt{5 x} & =5 \\
(\sqrt{5 x})^{2} & =5^{2} \\
5 x & =25 \\
x & =5
\end{aligned}
$$

c) $42=7 \sqrt{2 x}, x \geq 0$

$$
\begin{aligned}
6 & =\sqrt{2 x} \\
(6)^{2} & =(\sqrt{2 x})^{2} \\
36 & =2 x \\
x & =18
\end{aligned}
$$

d) $-2 \sqrt{6 x}=-12, x \geq 0$

$$
\begin{aligned}
\sqrt{6 x} & =6 \\
(\sqrt{6 x})^{2} & =6^{2} \\
6 x & =36 \\
x & =6
\end{aligned}
$$

5. Solve each equation. Verify the solution.
a) $\sqrt{x-2}=5$
b) $\sqrt{3 x+1}=5$
$x-2 \geq 0$; that is, $x \geq 2$
$3 x+1 \geq 0 ;$ that is, $x \geq-\frac{1}{3}$ $(\sqrt{x-2})^{2}=5^{2}$

$$
x-2=25
$$

$$
x=27
$$

$$
\begin{aligned}
(\sqrt{3 x+1})^{2} & =5^{2} \\
3 x+1 & =25 \\
3 x & =24 \\
x & =8
\end{aligned}
$$

c) $4=\sqrt{2-7 x}$

$$
\begin{aligned}
& 2-7 x \geq 0 ; \text { that is, } x \leq \frac{2}{7} \\
& 4^{2}=(\sqrt{2-7 x})^{2} \\
& 16=2-7 x \\
& 14=-7 x
\end{aligned}
$$

d) $3=\sqrt{2 x+1}$

$$
2 x+1 \geq 0 ; \text { that is, } x \geq-\frac{1}{2}
$$

$$
3^{2}=(\sqrt{2 x+1})^{2}
$$

$$
9=2 x+1
$$

$$
8=2 x
$$

$$
x=4
$$

e) $\sqrt{5 x-9}-2=7$
f) $2 \sqrt{1-3 x}+1=9$
$5 x-9 \geq 0$; that is, $x \geq \frac{9}{5}$

$$
1-3 x \geq 0 ; \text { that is, } x \leq \frac{1}{3}
$$

$$
\begin{aligned}
\sqrt{5 x-9} & =9 \\
(\sqrt{5 x-9})^{2} & =(9)^{2} \\
5 x-9 & =81 \\
5 x & =90 \\
x & =18
\end{aligned}
$$

6. Determine whether the given value of x is a root of the equation.
a) $\sqrt{2 x+1}=9 ; x=16$

$$
\begin{aligned}
\text { L.S. } & =\sqrt{2(16)}+1 \quad \text { R.S. }=9 \\
& =\sqrt{32}+1 \\
& =4 \sqrt{2}+1
\end{aligned}
$$

Since L.S. \neq R.S., $x=16$ is not a root of the equation.
b) $\sqrt{3 x-6}=6 ; x=14$

$$
\begin{aligned}
\text { L.S. } & =\sqrt{3(14)-6} \quad \text { R.S. }=6 \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

Since L.S. $=$ R.S., $x=14$ is a root of the equation.
c) $9=\sqrt{121-2 x} ; x=20$

$$
\begin{aligned}
\text { L.S. }=9 \quad \text { R.S. } & =\sqrt{121-2(20)} \\
& =\sqrt{81} \\
& =9
\end{aligned}
$$

Since L.S. $=$ R.S., $x=20$ is a root of the equation.
d) $\sqrt{2 x-5}=\sqrt{3 x-2} ; x=-3$
$\begin{array}{ll}\text { Since } 2 x-5 \geq 0, & \text { Since } 3 x-2 \geq 0, \\ \text { then } x \geq \frac{5}{2} & \text { then } x \geq \frac{2}{3}\end{array}$
Since $x=-3$ does not lie in the set of possible values for x, $x=-3$ is not a root.
e) $\sqrt{2 x+5}=\sqrt{3 x+2} ; x=3$
L.S. $=\sqrt{2(3)+5}$
R.S. $=\sqrt{3(3)+2}$
$=\sqrt{11}$
$=\sqrt{11}$

Since L.S. $=$ R.S., $x=3$ is a root of the equation.

B
7. Determine the root of each equation. Verify the solution.
a) $\sqrt{6 x}=2, x \geq 0$

$$
\sqrt{6 x}=2
$$

$$
(\sqrt{6 x})^{2}=2^{2}
$$

$$
6 x=4
$$

$$
x=\frac{4}{6}, \text { or } \frac{2}{3}
$$

b) $2=\sqrt{2 x+1}$
$2 x+1 \geq 0$; that is, $x \geq-\frac{1}{2}$
$2=\sqrt{2 x+1}$
$2^{2}=(\sqrt{2 x+1})^{2}$
$4=2 x+1$
$3=2 x$
$x=\frac{3}{2}$
c) $3-\sqrt{x}=-2, x \geq 0$
$-\sqrt{x}=-5$ $\sqrt{x}=5$
$(\sqrt{x})^{2}=5^{2}$
$x=25$
d) $4=\sqrt{-2 x}+3$
$-2 x \geq 0$; that is, $x \leq 0$

$$
\begin{aligned}
4 & =\sqrt{-2 x}+3 \\
1 & =\sqrt{-2 x} \\
1^{2} & =(\sqrt{-2 x})^{2} \\
1 & =-2 x \\
x & =-\frac{1}{2}
\end{aligned}
$$

e) $1-3 \sqrt{5 x}=-3-2 \sqrt{5 x}$
$x \geq 0$

$$
\begin{aligned}
1-3 \sqrt{5 x} & =-3-2 \sqrt{5 x} \\
4 & =\sqrt{5 x} \\
4^{2} & =(\sqrt{5 x})^{2} \\
16 & =5 x \\
x & =\frac{16}{5}, \text { or } 3 \frac{1}{5}
\end{aligned}
$$

f) $2-2 \sqrt{3 x}=1-\sqrt{3 x}$
$x \geq 0$

$$
\begin{aligned}
2-2 \sqrt{3 x} & =1-\sqrt{3 x} \\
1 & =\sqrt{3 x} \\
1^{2} & =(\sqrt{3 x})^{2} \\
1 & =3 x \\
x & =\frac{1}{3}
\end{aligned}
$$

8. The formula $V=\sqrt{P R}$ relates the potential difference across an electrical circuit, V volts, to the power, P watts, and the resistance, R ohms. The potential difference across a $40-\mathrm{W}$ amplifier is 80 V . What is the resistance of the amplifier? How did you find out?

$$
\begin{aligned}
& V=\sqrt{P R} \quad \text { Substitute: } V=80, P=40 \\
& 80=\sqrt{40 R} \\
&(80)^{2}=(\sqrt{40 R})^{2} \\
& 6400=40 R \\
& R=160 \\
& \text { The resistance of the amplifier is } 160 \text { ohms. }
\end{aligned}
$$

9. Determine the root of each equation. Verify the solution.
a) $\frac{\sqrt{x}}{5}=2$
b) $-2=\frac{-\sqrt{2 x}}{4}$
$x \geq 0$ $\frac{\sqrt{x}}{5}=2$
$\sqrt{x}=10$
$(\sqrt{x})^{2}=10^{2}$
$x=100$

$$
\begin{aligned}
-2 & =\frac{-\sqrt{2 x}}{4} \\
-8 & =-\sqrt{2 x} \\
8 & =\sqrt{2 x} \\
8^{2} & =(\sqrt{2 x})^{2} \\
64 & =2 x \\
x & =32
\end{aligned}
$$

c) $\frac{\sqrt{3 x-2}}{2}=1$

$$
\begin{aligned}
& 3 x-2 \geq 0 ; \text { that is, } x \geq \frac{2}{3} \\
& \frac{\sqrt{3 x-2}}{2}=1 \\
& \sqrt{3 x-2}=2 \\
&(\sqrt{3 x-2})^{2}=2^{2} \\
& 3 x-2=4 \\
& 3 x=6 \\
& x=2
\end{aligned}
$$

d) $\sqrt{x-7}=\frac{\sqrt{2 x+4}}{2}$

$$
\begin{aligned}
& x-7 \geq 0 ; \text { that is, } x \geq 7 \\
& 2 x+4 \geq 0 ; \text { that is, } x \geq-2
\end{aligned}
$$

So, for both radicals to be defined, $x \geq 7$

$$
\begin{aligned}
\sqrt{x-7} & =\frac{\sqrt{2 x+4}}{2} \\
2 \sqrt{x-7} & =\sqrt{2 x+4} \\
(2 \sqrt{x-7})^{2} & =(\sqrt{2 x+4})^{2} \\
4(x-7) & =2 x+4 \\
4 x-28 & =2 x+4 \\
2 x & =32 \\
x & =16
\end{aligned}
$$

10. Which of these equations have real roots? Justify your answers.
a) $2=\sqrt{3 x-1}$

$$
\begin{aligned}
3 x & -1 \geq 0 ; \text { that is, } x \geq \frac{1}{3} \\
2 & =\sqrt{3 x-1} \\
2^{2} & =(\sqrt{3 x-1})^{2} \\
4 & =3 x-1 \\
5 & =3 x \\
x & =\frac{5}{3} \\
x & =\frac{5}{3} \text { lies in the set of possible values for } x . \text { So, the equation has a real root. }
\end{aligned}
$$

b) $\sqrt{3 x-1}+5=2$

$$
\begin{gathered}
3 x-1 \geq 0 ; \text { that is, } x \geq \frac{1}{3} \\
\sqrt{3 x-1}+5=2 \\
\sqrt{3 x-1}=-3
\end{gathered}
$$

The left side of the equation is greater than or equal to 0 .
The right side of the equation is negative, -3 .
So, no real solutions are possible.
The equation has no real roots.
c) $\sqrt{5 x+3}=\sqrt{3 x+1}$

$$
\begin{aligned}
& 5 x+3 \geq 0 ; \text { that is, } x \geq-\frac{3}{5} \\
& 3 x+1 \geq 0 ; \text { that is, } x \geq-\frac{1}{3}
\end{aligned}
$$

So, for both radicals to be defined, $x \geq-\frac{1}{3}$

$$
\begin{aligned}
\sqrt{5 x+3} & =\sqrt{3 x+1} \\
(\sqrt{5 x+3})^{2} & =(\sqrt{3 x+1})^{2} \\
5 x+3 & =3 x+1 \\
2 x & =-2 \\
x & =-1
\end{aligned}
$$

Since $x=-1$ does not lie in the set of possible values for x, the equation has no real roots.
d) $\sqrt{-3 x+7}=\sqrt{-2 x+9}$
$-3 x+7 \geq 0 ;$ that is, $x \leq \frac{7}{3}$
$-2 x+9 \geq 0 ;$ that is, $x \leq \frac{9}{2}$
So, for both radicals to be defined, $x \leq \frac{7}{3}$

$$
\begin{aligned}
\sqrt{-3 x+7} & =\sqrt{-2 x+9} \\
(\sqrt{-3 x+7})^{2} & =(\sqrt{-2 x+9})^{2} \\
-3 x+7 & =-2 x+9 \\
-2 & =x
\end{aligned}
$$

Since $x=-2$ lies in the set of possible values for x, the equation has a real root.
11. The period, P seconds, of a pendulum is the time to complete one full swing. The period can be determined using the formula $P=2 \pi \sqrt{\frac{L}{9.8}}$, where L is the length of the pendulum in metres. Approximately how long should a pendulum be to complete one full swing in $2 s$?

$$
\begin{aligned}
P & =2 \pi \sqrt{\frac{L}{9.8}} \quad \text { Substitute: } P=2 \\
2 & =2 \pi \sqrt{\frac{L}{9.8}} \\
\frac{1}{\pi} & =\sqrt{\frac{L}{9.8}} \\
\left(\frac{1}{\pi}\right)^{2} & =\left(\sqrt{\frac{L}{9.8}}\right)^{2} \\
\frac{1}{\pi^{2}} & =\frac{L}{9.8} \\
\frac{9.8}{\pi^{2}} & =L \\
L & =0.9929 \ldots
\end{aligned}
$$

The pendulum should be about 1 m long.
12. Which of these equations have real roots? Justify your answers.
a) $2 \sqrt{x+8}=3 \sqrt{3 x+1}$
$x+8 \geq 0$; that is, $x \geq-8$
$3 x+1 \geq 0$; that is, $x \geq-\frac{1}{3}$
So, for both radicals to be defined, $x \geq-\frac{1}{3}$

$$
\begin{aligned}
2 \sqrt{x+8} & =3 \sqrt{3 x+1} \\
(2 \sqrt{x+8})^{2} & =(3 \sqrt{3 x+1})^{2} \\
4(x+8) & =9(3 x+1) \\
4 x+32 & =27 x+9 \\
23 x & =23 \\
x & =1
\end{aligned}
$$

$x=1$ lies in the set of possible values for x. So, the equation has a real root.
b) $2 \sqrt{x-8}=3 \sqrt{3 x+1}$
$x-8 \geq 0$; that is, $x \geq 8$
$3 x+1 \geq 0$; that is, $x \geq-\frac{1}{3}$
So, for both radicals to be defined,
$x \geq 8$

$$
\begin{aligned}
2 \sqrt{x-8} & =3 \sqrt{3 x+1} \\
(2 \sqrt{x-8})^{2} & =(3 \sqrt{3 x+1})^{2} \\
4(x-8) & =9(3 x+1) \\
4 x-32 & =27 x+9 \\
23 x & =-41 \\
x & =-\frac{41}{23}
\end{aligned}
$$

Since $x=-\frac{41}{23}$ does not lie in the set of possible values for x, the equation has no real roots.
c) $2 \sqrt{x+8}=3 \sqrt{3 x-1}$
$x+8 \geq 0$; that is, $x \geq-8$
$3 x-1 \geq 0$; that is, $x \geq \frac{1}{3}$
So, for both radicals to be defined, $x \geq \frac{1}{3}$

$$
\begin{aligned}
2 \sqrt{x+8} & =3 \sqrt{3 x-1} \\
(2 \sqrt{x+8})^{2} & =(3 \sqrt{3 x-1})^{2} \\
4(x+8) & =9(3 x-1) \\
4 x+32 & =27 x-9 \\
23 x & =41 \\
x & =\frac{41}{23}
\end{aligned}
$$

$x=\frac{41}{23}$ lies in the set of possible values for x. So, the equation has a real root.
d) $2 \sqrt{x-8}=3 \sqrt{3 x-1}$
$x-8 \geq 0$; that is, $x \geq 8$
$3 x-1 \geq 0$; that is, $x \geq \frac{1}{3}$
So, for both radicals to be defined, $x \geq 8$

$$
\begin{aligned}
2 \sqrt{x-8} & =3 \sqrt{3 x-1} \\
(2 \sqrt{x-8})^{2} & =(3 \sqrt{3 x-1})^{2} \\
4(x-8) & =9(3 x-1) \\
4 x-32 & =27 x-9 \\
23 x & =-23 \\
x & =-1
\end{aligned}
$$

Since $x=-1$ does not lie in the set of possible values for x, the equation has no real roots.
13. A student solved the equation $2 \sqrt{5-4 x}=-4$ and determined that the root was $x=\frac{1}{4}$. Is the student correct? If the student is correct, explain why. If the student is incorrect, what is the correct solution?
$5-4 x \geq 0$; that is, $x \leq \frac{5}{4}$
$2 \sqrt{5-4 x}=-4$
$\sqrt{5-4 x}=-2$
The left side of the equation is greater than or equal to 0 .
The right side of the equation is negative, -2 .
So, no real solutions are possible.
The equation has no real roots.
So, the student is incorrect.
14. Write three radical equations that have a root of 4 . Describe your strategy.

Start with the solution $x=4$.
Add the same number to both sides so that the number on the right side of the equation is a perfect square: $5+x=4+5$

$$
5+x=9
$$

Then take the square root of both sides: $\sqrt{5+x}=\sqrt{9}$
Use mental math to check. The equation has a root of 4.
Similarly, the equations $\sqrt{12+x}=\sqrt{16}$ and $\sqrt{-3+x}=\sqrt{1}$ have a root of 4.
15. The roof of a circular stadium is part of a sphere.

The formula $l=\sqrt{4 h(2 r-h)}$ relates the length of the stadium, l metres, to the maximum height, h metres, of the roof and the radius, r metres, of the sphere.

A stadium has length 160 m and maximum height 40 m .
What is the radius of the sphere?

$$
\begin{aligned}
I & =\sqrt{4 h(2 r-h)} \quad \text { Substitute: } I=160, h=40 \\
160 & =\sqrt{4(40)(2 r-40)} \\
160 & =\sqrt{320 r-6400} \\
(160)^{2} & =(\sqrt{320 r-6400})^{2} \\
25600 & =320 r-6400 \\
320 r & =32000 \\
r & =100
\end{aligned}
$$

The radius of the sphere is 100 m .
16. Earth approximates a sphere with radius 6370 km .
a) The formula for the surface area of a sphere is: $S A=4 \pi r^{2}$

To the nearest kilometre, determine the edge length of a cube with the same surface area as Earth.

```
\(S A=4 \pi r^{2} \quad\) Substitute: \(r=6370\)
\(S A=4 \pi(6370)^{2}\)
\(S A \doteq 509904363.8\)
```

The surface area of Earth is approximately $509904363.8 \mathrm{~km}^{2}$.
The formula for the surface area of a cube with edge length
e kilometres is:

$S A$	$=6 e^{2} \quad$ Substitute: $S A=509904363.8$
509904363.8	$=6 e^{2}$
84984060.63	$=e^{2}$
$\sqrt{84984060.63}$	$=e$
$9218.6799 \ldots$	$=e$

The edge length of the cube is about 9219 km .
b) The formula for the volume of a sphere is: $V=\frac{4}{3} \pi r^{3}$

To the nearest kilometre, determine the edge length of a cube with the same volume as Earth.
$V=\frac{4}{3} \pi r^{3} \quad$ Substitute: $r=6370$
$V=\frac{4}{3} \pi(6370)^{3}$
$V \doteq 1.082696932 \times 10^{12}$
The volume of Earth is approximately $1.082696932 \times 10^{12} \mathrm{~km}^{3}$.
The formula for the volume of a cube with edge length e kilometres is:

$$
\begin{aligned}
V & =e^{3} \quad \text { Substitute: } V=1.082696932 \times 10^{12} \\
1.082696932 \times 10^{12} & =e^{3} \\
\sqrt[3]{1.082696932 \times 10^{12}} & =e \\
10268.38875 \ldots & =e
\end{aligned}
$$

The edge length of the cube is about 10268 km .
17. Determine the root of each equation. Verify the solution. What strategy did you use?
a) $4=\sqrt[3]{8 x}$
b) $\sqrt[3]{2 x-5}=3$
c) $2=\sqrt[3]{2 x+3}+5$

$$
\begin{aligned}
4^{3} & =(\sqrt[3]{8 x})^{3} \\
64 & =8 x \\
x & =8
\end{aligned}
$$

$$
\begin{aligned}
(\sqrt[3]{2 x-5})^{3} & =3^{3} \\
2 x-5 & =27 \\
2 x & =32 \\
x & =16
\end{aligned}
$$

$$
-3=\sqrt[3]{2 x+3}
$$

$$
(-3)^{3}=(\sqrt[3]{2 x+3})^{3}
$$

$$
-27=2 x+3
$$

$$
2 x=-30
$$

$$
x=-15
$$

I isolated the radical, then cubed both sides of the equation to eliminate the radical sign. I then solved the equation for x, and verified my solution.

