Checkpoint 1: Assess Your Understanding, pages 108–109

2.1

1. Order the numbers in this set from greatest to least. 11 + 21

$$-5, -|-6|, 0, |-3|, 1, \left|\frac{1}{2}\right|, \left|-3\frac{2}{3}\right|$$

$$\begin{array}{rcl}
-5 & -|-6| = -(6) & 0 & |-3| = 3 \\
& = -6
\end{array}$$

1 $\left|\frac{1}{2}\right| = \frac{1}{2}$ $\left|-3\frac{2}{3}\right| = 3\frac{2}{3}$ From greatest to least: $3\frac{2}{3} > 3 > 1 > \frac{1}{3} > 0 > -5 > -6$

That is,
$$\left|-3\frac{2}{3}\right| > \left|-3\right| > 1 > \left|\frac{1}{2}\right| > 0 > -5 > -\left|-6\right|$$

- **2.** Use the numbers -3.5 and $4\frac{1}{4}$.
 - **a**) Mark each number on a number line and use absolute value to show its distance from 0.

$$|-3.5| \text{ units} | |4\frac{1}{4}| |4| |4\frac{1}{4}| |4\frac{$$

b) Use absolute value to determine the distance between the numbers.

$$\begin{vmatrix} 4\frac{1}{4} - (-3.5) \end{vmatrix} = \begin{vmatrix} 4\frac{1}{4} + 3.5 \end{vmatrix}$$

= $|4.25 + 3.5|$
= $|7.75|$
= 7.75
The numbers are 7.75 units apart on a number line.

3. Multiple Choice Which expression has the least value?

(A.)
$$-3|-4|+2$$
B. $-3|-4+2|$ C. $|-3||-4+2|$ D. $|-3(-4)+2|$

2.2

4. Arrange in order from least to greatest.

$$2\sqrt{27}, 5\sqrt{3}, \sqrt{12}$$

Each radical has index 2. Write each mixed radical as an entire radical.

$$2\sqrt{27} = \sqrt{2^2} \cdot \sqrt{27} \qquad 5\sqrt{3} = \sqrt{5^2} \cdot \sqrt{3} \qquad \sqrt{12} \\ = \sqrt{4 \cdot 27} \qquad = \sqrt{25 \cdot 3} \\ = \sqrt{108} \qquad = \sqrt{75} \\ \text{Compare the radicands: } 12 < 75 < 108 \\ \end{cases}$$

So, from least to greatest: $\sqrt{12}$, $5\sqrt{3}$, $2\sqrt{27}$

5. Write each entire radical as a mixed radical.

a)
$$\sqrt{162}$$
 b) $\sqrt[3]{-250}$ c) $\sqrt[3]{\frac{16}{27}}$
 $= \sqrt{81 \cdot 2}$ $= \sqrt[3]{-125 \cdot 2}$ $= \sqrt[3]{\frac{8 \cdot 2}{27}}$
 $= 9\sqrt{2}$ $= -5\sqrt[3]{2}$ $= \frac{\sqrt[3]{\frac{8 \cdot 2}{27}}}{\frac{2\sqrt[3]{2}}{3}}$

6. For which values of the variable is each radical defined?

a)
$$\sqrt{2a^2}$$

 $\sqrt{2a^2} \in \mathbb{R}$ when $2a^2 \ge 0$.
 $2 > 0$ and $a^2 \ge 0$
So, $\sqrt{2a^2}$ is defined for $a \in \mathbb{R}$.

b) $\sqrt[4]{125x^3}$

 $\sqrt[4]{125x^3}$ ∈ ℝ when $125x^3 ≥ 0$. 125 > 0, so $x^3 ≥ 0$; that is, x ≥ 0So, $\sqrt[4]{125x^3}$ is defined for x ≥ 0.

c) $\sqrt[3]{-27\nu}$

Since the cube root of a number is defined for all real numbers, $\sqrt[3]{-27\nu}$ is defined for $\nu \in \mathbb{R}$.