PRACTICE TEST, pages 162–164

1. Multiple Choice Which statement is false?

A.
$$|x| = \sqrt{x^2}$$
 for $x \in \mathbb{R}$
B. $x = \sqrt{x^2}$ for $x \ge 0$
C. $|x| = \sqrt[3]{x^3}$ for $x \in \mathbb{R}$

$$\mathbf{D.} x = \sqrt[3]{x^3} \quad \text{for } x \ge 0$$

2. Multiple Choice Which is the correct simplification of $\sqrt{12x^3}$?

A.
$$2\sqrt{3x^3}, x \ge 0$$

B.
$$2x\sqrt{3x}$$
, $x \in \mathbb{R}$

$$C.2x\sqrt{3x}, x \ge 0$$

D.
$$2|x|\sqrt{3x}, x \in \mathbb{R}$$

3. Simplify.

a)
$$\sqrt{72} - 5\sqrt{2} + 3\sqrt{8}$$

b) $(\sqrt{3} - \sqrt{5})(\sqrt{3} + \sqrt{5})$
 $= \sqrt{36 \cdot 2} - 5\sqrt{2} + 3\sqrt{4 \cdot 2}$
 $= 6\sqrt{2} - 5\sqrt{2} + 6\sqrt{2}$
 $= 7\sqrt{2}$
b) $(\sqrt{3} - \sqrt{5})(\sqrt{3} + \sqrt{5})$
 $= \sqrt{3}(\sqrt{3} + \sqrt{5}) - \sqrt{5}(\sqrt{3} + \sqrt{5})$
 $= 3 + \sqrt{15} - \sqrt{15} - 5$
 $= -2$

c)
$$(2\sqrt{6} + 3\sqrt{5})^2$$

= $(2\sqrt{6} + 3\sqrt{5})(2\sqrt{6} + 3\sqrt{5})$
= $2\sqrt{6}(2\sqrt{6} + 3\sqrt{5})$
= $2\sqrt{6}(2\sqrt{6} + 3\sqrt{5})$
+ $3\sqrt{5}(2\sqrt{6} + 3\sqrt{5})$
= $24 + 6\sqrt{30} + 6\sqrt{30} + 45$
= $69 + 12\sqrt{30}$
= $\frac{\sqrt{7} + \sqrt{3}}{4}$
= $\frac{\sqrt{7} + \sqrt{3}}{4}$

4. Identify the values of the variable for which each radical is defined where necessary, then simplify.

a)
$$(\sqrt{x} + 2)(\sqrt{x} - 3)$$

The radicands cannot be negative, so $x \ge 0$.
 $(\sqrt{x} + 2)(\sqrt{x} - 3)$
 $= \sqrt{x}(\sqrt{x} - 3) + 2(\sqrt{x} - 3)$
 $= x - 3\sqrt{x} + 2\sqrt{x} - 6$
b) $6\sqrt{a^2} + 2a$
 $a^2 \ge 0$, so $\sqrt{a^2}$ is defined for $a \in \mathbb{R}$.
 $6\sqrt{a^2} + 2a$
 $= 6|a| + 2a$
 $= 6|a| + 2a$

c)
$$\frac{8\sqrt{2}}{\sqrt{12} - \sqrt{10}}$$

$$= \frac{8\sqrt{2}}{2\sqrt{3} - \sqrt{10}}$$

$$= \frac{8\sqrt{2}}{(2\sqrt{3} - \sqrt{10})} \cdot \frac{(2\sqrt{3} + \sqrt{10})}{(2\sqrt{3} + \sqrt{10})}$$

$$= \frac{8\sqrt{2}}{(2\sqrt{3} - \sqrt{10})} \cdot \frac{(2\sqrt{3} + \sqrt{10})}{(2\sqrt{3} + \sqrt{10})}$$

$$= \frac{8\sqrt{2}(2\sqrt{3}) + 8\sqrt{2}(\sqrt{10})}{(2\sqrt{3})^2 - (\sqrt{10})^2}$$

$$= \frac{8\sqrt{2}(2\sqrt{3}) + 8\sqrt{2}(\sqrt{10})}{(2\sqrt{3})^2 - (\sqrt{10})^2}$$

$$= \frac{16\sqrt{6} + 8\sqrt{20}}{12 - 10}$$

$$= \frac{16\sqrt{6} + 16\sqrt{5}}{2}$$

$$= 8\sqrt{6} + 8\sqrt{5}$$
d)
$$\frac{2\sqrt{10} - \sqrt{3}}{(\sqrt{10} - \sqrt{3})} \cdot \frac{(\sqrt{10} - \sqrt{3})}{(\sqrt{10} - \sqrt{3})}$$

$$= \frac{2\sqrt{10}(\sqrt{10} - \sqrt{3}) \cdot \sqrt{3}(\sqrt{10} - \sqrt{3})}{(\sqrt{10})^2 - (\sqrt{3})^2}$$

$$= \frac{2\sqrt{10}(\sqrt{10} - \sqrt{3}) \cdot \sqrt{3}(\sqrt{10} - \sqrt{3})}{(\sqrt{10})^2 - (\sqrt{3})^2}$$

$$= \frac{2\sqrt{10}(\sqrt{10} - \sqrt{3}) \cdot \sqrt{3}(\sqrt{10} - \sqrt{3})}{(\sqrt{10})^2 - (\sqrt{3})^2}$$

$$= \frac{2\sqrt{10}(\sqrt{10} - \sqrt{3}) \cdot \sqrt{3}(\sqrt{10} - \sqrt{3})}{(\sqrt{10})^2 - (\sqrt{3})^2}$$

$$= \frac{2\sqrt{10}(\sqrt{10} - \sqrt{3}) \cdot \sqrt{3}(\sqrt{10} - \sqrt{3})}{(\sqrt{10} - \sqrt{3})}$$

$$= \frac{2\sqrt{10}(\sqrt{10} - \sqrt{3}) \cdot \sqrt{3}(\sqrt{10} - \sqrt{3})}{(\sqrt{10})^2 - (\sqrt{3})^2}$$

$$= \frac{20 - 2\sqrt{30} - \sqrt{30} + 3}{10 - 3}$$

$$= \frac{23 - 3\sqrt{30}}{7}$$

5. Which equations have real roots? If the root is real, determine its value. If the equation has no real roots, explain how you know.

a)
$$\sqrt{2x + 3} = 3$$

 $2x + 3 \ge 0$; that is, $x \ge -\frac{3}{2}$
 $\sqrt{2x + 3} = 3$
 $(\sqrt{2x + 3})^2 = 3^2$
 $2x + 3 = 9$
 $2x = 6$
 $x = 3$
b) $\sqrt{5x - 1} = \sqrt{2x + 5}$
 $2x + 5 \ge 0$; that is, $x \ge \frac{1}{5}$
 $2x + 5 \ge 0$; that is, $x \ge -\frac{5}{2}$
So, for both radicals to be defined by $\sqrt{5x - 1} = \sqrt{2x + 5}$
 $(\sqrt{5x - 1})^2 = (\sqrt{2x + 5})^2$
 $5x - 1 \ge 2x + 5$

x = 3 lies in the set of possible values for x. So, the equation has a real root.

b)
$$\sqrt{5x-1} = \sqrt{2x+5}$$

$$5x - 1 \ge 0$$
; that is, $x \ge \frac{1}{5}$
 $2x + 5 \ge 0$; that is, $x \ge -\frac{5}{2}$

So, for both radicals to be defined, $x \ge \frac{1}{r}$

$$\sqrt{5x - 1} = \sqrt{2x + 5}$$
$$(\sqrt{5x - 1})^2 = (\sqrt{2x + 5})^2$$
$$5x - 1 = 2x + 5$$
$$3x = 6$$
$$x = 2$$

x = 2 lies in the set of possible values for x. So, the equation has a real root.

c)
$$\sqrt{3x+2}+5=2$$

$$3x + 2 \ge 0$$
; that is, $x \ge -\frac{2}{3}$ $x - 8 \ge 0$; that is, $x \ge 8$
 $\sqrt{3x + 2 + 5} = 2$ So, for both radicals to be
$$x \ge 8$$

The left side of the equation is greater than or equal to 0. The right side of the equation is negative, -3.

So, no real solutions are possible.

The equation has no real roots.

d)
$$2\sqrt{x-8} = 3\sqrt{x+2}$$

$$x - 8 \ge 0$$
; that is, $x \ge 8$
 $x + 2 \ge 0$; that is, $x \ge -2$
So, for both radicals to be defined,
 $x \ge 8$

$$2\sqrt{x-8} = 3\sqrt{x+2}$$

$$(2\sqrt{x-8})^2 = (3\sqrt{x+2})^2$$

$$4(x-8) = 9(x+2)$$

$$4x-32 = 9x+18$$

$$-50 = 5x$$

x = -10x = -10 does not lie in the set of possible values for x. So, the equation has no real roots.

6. To make a picture frame, a square with area 40 cm² is cut from a square with area 90 cm². Serena wants to put a thin gold ribbon around the inside and outside edges of the frame. How much ribbon does Serena need?

The side length of a square is the square root of its area.

So, the side length of the square with area 40 cm² is: $\sqrt{40} = 2\sqrt{10}$ cm

The side length of the square with area 90 cm² is: $\sqrt{90} = 3\sqrt{10}$ cm

The length of ribbon needed = perimeter of large square + perimeter of small square =
$$4(2\sqrt{10}) + 4(3\sqrt{10})$$
 = $8\sqrt{10} + 12\sqrt{10}$ = $20\sqrt{10}$

Serena needs $20\sqrt{10}$ cm of ribbon.

7. The formula $t = \sqrt{\frac{2d}{9.8}}$ gives the time, t seconds, for an object at rest to fall d metres. It took 2.5 s for a ball dropped from a roof to hit the ground. To the nearest metre, from what height was the ball dropped?

$$t = \sqrt{\frac{2d}{9.8}}$$
 Substitute: $t = 2.5$

$$2.5 = \sqrt{\frac{2d}{9.8}}$$

$$(2.5)^2 = \left(\sqrt{\frac{2d}{9.8}}\right)^2$$

$$6.25 = \frac{2d}{9.8}$$

$$61.25 = 2d$$

$$d = 30.625$$

The ball was dropped from a height of about 31 m.