Lesson 3.2 Exercises, pages 190-195
 Students should verify all the solutions.

A
4. Which equations are quadratic equations? Explain how you know.
a) $3 x^{2}=30$
b) $x^{2}-9 x+8=0$

This equation is quadratic because the variable term with the greatest exponent is an x^{2}-term.

This equation is quadratic because it is written in the form $a x^{2}+b x+c=0$.
c) $x^{3}-x^{2}+5=0$

This equation is not quadratic; it cannot be written in the form $a x^{2}+b x+c=0$ because it has one x^{3}-term.
d) $6 x+5=x-7$

This equation is not quadratic; it cannot be written in the form $a x^{2}+b x+c=0$ because it does not have an x^{2}-term.
5. Solve each quadratic equation. Verify the solutions.
a) $(x+5)(x+8)=0$
Either $x+5=0$, then
$x=-5$; or $x+8=0$,
b) $(x-1)(x-10)=0$
Either $x-1=0$, then $x=1$; or $x-10=0$, then $x=10$
then $x=-8$
c) $(2 x-3)(x+6)=0$

Either $2 x-3=0$

$$
\begin{aligned}
2 x & =3 \\
x & =1.5
\end{aligned}
$$

or $x+6=0$, then $x=-6$
d) $(3 x+2)(x-5)=0$

Either $3 x+2=0$

$$
\begin{aligned}
3 x & =-2 \\
x & =-\frac{2}{3}
\end{aligned}
$$

or $x-5=0$, then $x=5$
6. Solve.
a) $4(x+5)(x+9)=0$
Either $x+5=0$, then $x=-5$; or $x+9=0$, then $x=-9$
b) $3 x(x+4)=0$
Either $3 x=0$, then $x=0$; or $x+4=0$, then $x=-4$
c) $x(x-4)=0$

Either $x=0$;
or $x-4=0$, then $x=4$
d) $5(2 x-1)(3 x+7)=0$

Either $2 x=1$, then $x=\frac{1}{2}$;
or $3 x+7=0$, then $x=-\frac{7}{3}$

B
7. Solve by factoring. Verify the solutions.
a) $x^{2}-6 x+5=0$
$(x-1)(x-5)=0$
Either $x-1=0$, then $x=1$;
or $x-5=0$, then $x=5$
b) $3 x^{2}-21 x-54=0$
$3\left(x^{2}-7 x-18\right)=0$
$3(x-9)(x+2)=0$
Either $x-9=0$, then $x=9$;
or $x+2=0$, then $x=-2$
c) $2 x^{2}-15 x+25=0$
d) $10 x^{2}+x-3=0$
$(2 x-5)(x-5)=0$
Either $2 x-5=0$,
$(2 x-1)(5 x+3)=0$
Either $2 x-1=0$, then $x=\frac{1}{2}$;
then $x=2.5$;
or $x-5=0$, then $x=5$
or $5 x+3=0$, then $x=-\frac{3}{5}$
8. Solve by factoring.
a) $x^{2}-6 x=27$
b) $3 x^{2}-4 x=7$
$x^{2}-6 x-27=0$ $3 x^{2}-4 x-7=0$
$(x-9)(x+3)=0$
$(3 x-7)(x+1)=0$
Either $x-9=0$, then $x=9$;
Either $3 x-7=0$, then $x=\frac{7}{3}$;
or $x+3=0$, then $x=-3$
or $x+1=0$, then $x=-1$
c) $x^{2}-8 x+12=12$
d) $3 x^{2}-6 x=105$
$x^{2}-8 x=0$
$3 x^{2}-6 x-105=0$
$x(x-8)=0$
$3\left(x^{2}-2 x-35\right)=0$
Either $x=0$;
$3(x-7)(x+5)=0$
or $x-8=0$, then $x=8$
Either $x-7=0$, then $x=7$;
or $x+5=0$, then $x=-5$
9. A student wrote the solution below to solve this quadratic equation:

$$
\begin{aligned}
(x-5)(x+2) & =8 & & \\
\text { Either } x-5 & =2 & \text { or } & x+2
\end{aligned}=4
$$

Identify the error, then write the correct solution.
One side of the equation must be 0 before factoring.

$$
\begin{aligned}
(x-5)(x+2) & =8 & \\
x^{2}-3 x-10-8 & =0 & \\
x^{2}-3 x-18 & =0 & \\
(x+3)(x-6) & =0 & \\
\text { Either } x+3=0 & \text { or } & x-6=0 \\
x=-3 & & x=6
\end{aligned}
$$

10. Solve each equation.
a) $(x+3)(x+4)=6$
b) $x^{2}-9=4 x+36$
$x^{2}+7 x+12-6=0$
$x^{2}-9-4 x-36=0$
$x^{2}-4 x-45=0$
$(x+5)(x-9)=0$

$$
(x+1)(x+6)=0
$$

Either $x+1=0$,
Either $x+5=0$,
then $x=-1$;
then $x=-5$;
or $x+6=0$, then $x=-6$
or $x-9=0$, then $x=9$
c) $3 x^{2}+6=x(x+13)$
d) $2 x(x-6)+3 x=2 x-9$

$$
\begin{aligned}
& \qquad 3 x^{2}+6=x^{2}+13 x \\
& 2 x^{2}-13 x+6=0 \\
& (2 x-1)(x-6)=0 \\
& \text { Either } 2 x-1=0 \text {, } \\
& \text { then } x=0.5 \text {; } \\
& \text { or } x-6=0 \text {, then } x=6
\end{aligned}
$$

$$
\begin{array}{r}
2 x^{2}-12 x+3 x-2 x+9=0 \\
2 x^{2}-11 x+9=0 \\
(2 x-9)(x-1)=0
\end{array}
$$

Either $2 x-9=0$,
then $x=4.5$;
or $x-1=0$, then $x=1$
11. Create a quadratic equation that has exactly one root. Explain your strategy.

Sample response: Work backward. Choose a root of $x=6$.
The equation is: $(x-6)(x-6)=0$
Expand:

$$
x^{2}-12 x+36=0
$$

12. Solve each equation, then verify the solution:
a) $\sqrt{23-x}=x-3$
b) $\sqrt{2 x^{2}+1}+1=2 x$
$(\sqrt{23-x})^{2}=(x-3)^{2}$

$$
\sqrt{2 x^{2}+1}=2 x-1
$$

$$
23-x=x^{2}-6 x+9
$$

$$
\left(\sqrt{2 x^{2}+1}\right)^{2}=(2 x-1)^{2}
$$

$$
0=x^{2}-5 x-14
$$

$$
2 x^{2}+1=4 x^{2}-4 x+1
$$

$$
0=(x-7)(x+2)
$$

$$
0=2 x^{2}-4 x
$$

Either $x-7=0$, then $x=7$;

$$
0=2 x(x-2)
$$

or $x+2=0$, then $x=-2$
1 used mental math to verify.
$x \neq-2$; the root is $x=7$
Either $2 x=0$, then $x=0$; or $x-2=0$, then $x=2$ I used mental math to verify. $x \neq 0$; the root is $x=2$
13. Solve this equation: $\frac{x^{2}}{2}+\frac{7 x}{6}=1$

Multiply each term by the common denominator 6.

$$
\begin{array}{rlrlrl}
3 x^{2}+7 x & =6 & & \\
3 x^{2}+7 x-6 & =0 & & \\
(3 x-2)(x+3) & =0 & & \\
\text { Either } 3 x-2 & =0 & \text { or } & x+3 & =0 \\
x & =\frac{2}{3} & & x & =-3
\end{array}
$$

14. A football is kicked vertically. The approximate height of the football, h metres, after t seconds is modelled by this formula: $h=1+20 t-5 t^{2}$
a) Determine the height of the football after 2 s .
$h=1+20 t-5 t^{2} \quad$ Substitute $t=2$.
$h=1+20(2)-5(2)^{2}$
$h=21$
The football is 21 m high.
b) When is the football 16 m high?

$$
\begin{aligned}
& h=1+20 t-5 t^{2} \quad \text { Substitute } h=16, \text { then solve for } t . \\
& 16=1+20 t-5 t^{2} \\
& 5 t^{2}-20 t+15=0 \\
& 5\left(t^{2}-4 t+3\right)=0 \\
& 5(t-1)(t-3)=0 \\
& \text { So, } t=1 \text { or } t=3 \\
& \text { The football is } 16 \mathrm{~m} \text { high after } 1 \mathrm{~s} \text { and after } 3 \mathrm{~s} .
\end{aligned}
$$

c) Why are there two solutions for part b?

The football is 16 m high as it is rising and as it is falling.
15. A student wrote the solution below to solve this quadratic equation:

$$
\begin{aligned}
5 x^{2} & =25 x \\
\frac{25 x^{2}}{5 x} & =\frac{25 x}{5 x} \\
x & =5
\end{aligned}
$$

Identify the error, then write the correct solution.
The student should not have divided by x since $x=0$ is a solution.

$$
\begin{array}{rlrlrl}
5 x^{2} & =25 x & & \\
5 x^{2}-25 x & =0 & & \\
5 x(x-5) & =0 & & \\
\text { Either } 5 x & =0 & \text { or } & x-5 & =0 \\
x & =0 & & x & =5
\end{array}
$$

The roots are: $x=0$ and $x=5$
16. When twice a number is subtracted from the square of the number, the result is 99 . Determine the number.

Let x represent the number.
An equation is: $x^{2}-2 x=99$
$x^{2}-2 x-99=0$
$(x-11)(x+9)=0$
Either $x-11=0 \quad$ or $\quad x+9=0$
$x=11$
$x=-9$
The numbers are 11 and -9 .
17. Cody has a daily reading program where he reads for 2 min more than he did the day before. On the first day, he read for 10 min . Cody continued his program until he had read for a total of 6 h .
a) Write an equation to represent the number of days, n, for which Cody read.

The time, in minutes, for which Cody reads is:
$10+12+14+\ldots$
This is an arithmetic series with 1st term 10 and common difference 2.
The total time Cody reads, 6 h or 360 min , is the sum of this series.
Use: $S_{n}=\frac{n\left[2 t_{1}+d(n-1)\right]}{2}$ Substitute: $S_{n}=360, t_{1}=10, d=2$
$360=\frac{n[2(10)+2(n-1)]}{2}$
$720=n(20+2 n-2)$
$720=n(18+2 n)$
$720=18 n+2 n^{2}$
$0=2 n^{2}+18 n-720$ Divide each term by 2 .
$0=n^{2}+9 n-360$
b) Solve the equation for n.

$$
\begin{array}{rlrl}
n^{2}+9 n-360 & =0 & \\
(n+24)(n-15) & =0 & \\
\text { Either } n+24 & =0 & \text { or } & n-15
\end{array}=0
$$

Since the number of days cannot be negative, Cody read for 15 days.

C
18. Solve each equation, then verify the solutions.
a) $(2 x+1)^{2}=(x+5)^{2}$

$$
\begin{array}{rlrl}
4 x^{2}+4 x+1 & =x^{2}+10 x+25 \\
3 x^{2}-6 x-24 & =0 & \text { Divide each term by } 3 . \\
x^{2}-2 x-8 & =0 \\
(x-4)(x+2) & =0 & \\
\text { Either } x-4 & =0 & \text { or } \quad x+2 & =0 \\
x & =4 & & x=-2
\end{array}
$$

b) $(2 x-1)^{2}-2(2 x-1)-8=0$

This equation has the same form as the simplified equation in part a, where x is replaced with $2 x-1$.
$[(2 x-1)-4][(2 x-1)+2]=0$
$(2 x-5)(2 x+1)=0$

$$
\begin{array}{rlrlrl}
\text { Either } 2 x-5 & =0 & \text { or } & & 2 x+1 & =0 \\
x & =2.5 & & x & =-0.5
\end{array}
$$

19. The area of a rectangular sheep pen is $96 \mathrm{~m}^{2}$. The pen is divided into two smaller pens by inserting a fence parallel to the width of the pen. A total of 48 m of fencing is used. Determine the dimensions of the pen.

The area of the rectangular pen is $96 \mathrm{~m}^{2}$, and the width is
w metres, so the length, in metres, is $\frac{96}{w}$.
The total length of fencing is 48 m , so an equation is:

$$
\begin{aligned}
3 w+2\left(\frac{96}{w}\right) & =48 \quad \text { Multiply each term by } w . \\
3 w^{2}+2(96) & =48 w \\
3 w^{2}-48 w+192 & =0 \quad \text { Divide each term by } 3 \\
w^{2}-16 w+64 & =0 \\
(w-8)(w-8) & =0 \\
w-8 & =0 \\
w & =8
\end{aligned}
$$

The pen is 8 m wide, so its length is $\frac{96}{8} \mathrm{~m}$, or 12 m .
20. A rectangular garden has dimensions 3 m by 4 m . A path is built around the garden. The area of the garden and path is 6 times as great as the area of the garden. What is the width of the path?

Let the width of the path be x metres.
Then the width of the rectangle formed by the garden and path, in metres, is $3+2 x$, and the length of this rectangle, in metres, is $4+2 x$. The area of the garden is $12 \mathrm{~m}^{2}$.
The areas of the garden and path, in square metres, is:
$(3+2 x)(4+2 x)$
An equation is: $(3+2 x)(4+2 x)=6(12)$

$$
\begin{aligned}
12+14 x+4 x^{2} & =72 \\
4 x^{2}+14 x-60 & =0 \quad \text { Divide each term by } 2 . \\
2 x^{2}+7 x-30 & =0 \\
(2 x-5)(x+6) & =0
\end{aligned}
$$

Either $2 x-5=0 \quad$ or $\quad x+6=0$

$$
x=2.5
$$

$$
x=-6
$$

Since the width of the path cannot be negative, the width is 2.5 m .

