Lesson 3.4 Exercises, pages 217-226

A
4. Identify the values of a, b, and c to make each quadratic equation match the general form $a x^{2}+b x+c=0$.
a) $x^{2}+9 x-2=0$
b) $4 x^{2}-11 x=0$
Compare each equation to $a x^{2}+b x+c=0$
$a=1, b=9, c=-2$
$a=4, b=-11, c=0$
c) $11 x-3 x^{2}+8=0$
d) $3.2 x^{2}+6.1=0$

$$
-3 x^{2}+11 x+8=0
$$

$$
a=-3, b=11, c=8 \quad a=3.2, b=0, c=6.1
$$

5. Simplify each radical expression.
a) $\frac{6 \pm \sqrt{16}}{2}=\frac{6 \pm 4}{2}$
b) $\frac{-8 \pm \sqrt{80}}{4}=\frac{-8 \pm 4 \sqrt{5}}{4}$
$\frac{6+4}{2}=5 ;$ or $\frac{6-4}{2}=1$

$$
\begin{aligned}
& =\frac{4(-2 \pm \sqrt{5})}{4} \\
& =-2 \pm \sqrt{5}
\end{aligned}
$$

c) $\frac{3 \pm \sqrt{45}}{6}=\frac{3 \pm 3 \sqrt{5}}{6}$
d) $\frac{12 \pm \sqrt{28}}{4}=\frac{12 \pm 2 \sqrt{7}}{4}$

$$
\begin{aligned}
& =\frac{3(1 \pm \sqrt{5})}{6} \\
& =\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

$$
=\frac{2(6 \pm \sqrt{7})}{4}
$$

$$
=\frac{6 \pm \sqrt{7}}{2}
$$

B
6. Solve each quadratic equation.
a) $x^{2}+6 x+4=0$
b) $x^{2}-10 x+17=0$

For each equation, substitute for a, b, and c in:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$a=1, b=-6, c=4$

$$
a=1, b=-10, c=17
$$

$x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(4)}}{2(1)}$
$x=\frac{-(-10) \pm \sqrt{(-10)^{2}-4(1)(17)}}{2(1)}$
$x=\frac{6 \pm \sqrt{20}}{2}$
$x=\frac{10 \pm \sqrt{32}}{2}$
$x=\frac{6 \pm 2 \sqrt{5}}{2}$
$x=\frac{10 \pm 4 \sqrt{2}}{2}$
$x=3 \pm \sqrt{5}$
$x=5 \pm 2 \sqrt{2}$
c) $x^{2}+4 x-3=0$
d) $2 x^{2}-2 x-1=0$
$a=1, b=4, c=-3$

$$
a=2, b=-2, c=-1
$$

$x=\frac{-4 \pm \sqrt{4^{2}-4(1)(-3)}}{2(1)}$
$x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(2)(-1)}}{2(2)}$
$x=\frac{-4 \pm \sqrt{28}}{2}$
$x=\frac{2 \pm \sqrt{12}}{4}$
$x=\frac{-4 \pm 2 \sqrt{7}}{2}$
$x=\frac{2 \pm 2 \sqrt{3}}{4}$
$x=-2 \pm \sqrt{7}$
$x=\frac{1 \pm \sqrt{3}}{2}$
7. Solve each quadratic equation.
a) $3 x^{2}=4 x+1$
b) $4 x^{2}-1=-7 x$

For each equation, substitute for a, b, and c in:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$3 x^{2}-4 x-1=0$
$4 x^{2}+7 x-1=0$
$a=3, b=-4, c=-1$
$a=4, b=7, c=-1$
$x=\frac{4 \pm \sqrt{(-4)^{2}-4(3)(-1)}}{2(3)}$
$x=\frac{-7 \pm \sqrt{7^{2}-4(4)(-1)}}{2(4)}$
$x=\frac{4 \pm \sqrt{28}}{6}$
$x=\frac{-7 \pm \sqrt{65}}{8}$
$x=\frac{4 \pm 2 \sqrt{7}}{6}$
$x=\frac{2 \pm \sqrt{7}}{3}$
c) $2 x(x-3)=4(x-3)+1$
d) $(2 x+1)^{2}+2=0$
$2 x^{2}-6 x-4 x+12-1=0$
$4 x^{2}+4 x+1+2=0$
$2 x^{2}-10 x+11=0$
$4 x^{2}+4 x+3=0$
$a=2, b=-10, c=11$
$a=4, b=4, c=3$
$x=\frac{10 \pm \sqrt{(-10)^{2}-4(2)(11)}}{2(2)}$
$x=\frac{-4 \pm \sqrt{4^{2}-4(4)(3)}}{2(4)}$
$x=\frac{10 \pm \sqrt{12}}{4}$
$x=\frac{-4 \pm \sqrt{-32}}{8}$
$x=\frac{10 \pm 2 \sqrt{3}}{4}$
The radicand is negative, so there are no real roots.
$x=\frac{5 \pm \sqrt{3}}{2}$
8. A student wrote the solution below to solve this quadratic equation:
$2 x^{2}-3=7 x$
$x=-b \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}$
$x=-(-7) \pm \frac{\sqrt{(-7)^{2}-4(2)(-3)}}{2(2)}$
$x=7 \pm \frac{\sqrt{73}}{4}$
Identify the error, then write the correct solution.
The student wrote an incorrect quadratic formula.
The correct solution is:
$x=\frac{7 \pm \sqrt{(-7)^{2}-4(2)(-3)}}{2(2)}$
$x=\frac{7 \pm \sqrt{73}}{4}$
9. a) Solve each equation by factoring.
i) $3 x^{2}=11 x+20$
$3 x^{2}-11 x-20=0$
ii) $12 x^{2}+8 x=15$
$12 x^{2}+8 x-15=0$
$(3 x+4)(x-5)=0$
$(2 x+3)(6 x-5)=0$
$x=-\frac{4}{3}$ or $x=5$
$x=-\frac{3}{2}$ or $x=\frac{5}{6}$
b) Solve each equation in part a using the quadratic formula.

For each equation, substitute for a, b, and c in:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
i) $3 x^{2}-11 x-20=0$
ii) $12 x^{2}+8 x-15=0$
$a=3, b=-11, c=-20$
$x=\frac{11 \pm \sqrt{(-11)^{2}-4(3)(-20)}}{2(3)}$ $a=12, b=8, c=-15$
$x=\frac{-8 \pm \sqrt{8^{2}-4(12)(-15)}}{2(12)}$
$x=\frac{11 \pm \sqrt{361}}{6}$
$x=\frac{-8 \pm \sqrt{784}}{24}$
$x=\frac{11 \pm 19}{6}$
$x=\frac{-8 \pm 28}{24}$
$x=\frac{11+19}{6}=5$
$x=\frac{-8+28}{24}=\frac{5}{6}$
Or, $x=\frac{11-19}{6}=-\frac{4}{3}$
Or, $x=\frac{-8-28}{24}=-\frac{3}{2}$
c) Which method do you prefer and why?

I prefer to factor when the numbers are small because it is quicker.
I prefer to use the quadratic formula when the numbers are large and I have many factors to guess and test.
10. For each equation, choose a solution strategy, justify your choice, then solve the equation.
a) $2 x^{2}+9 x+8=0$
b) $x^{2}+7 x-30=0$
I use the formula because I
I can factor.
cannot factor.
$(x-3)(x+10)=0$
Substitute: $a=2, b=9, c=8 \quad x=3$ or $x=-10$
in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-9 \pm \sqrt{9^{2}-4(2)(8)}}{2(2)}$
$x=\frac{-9 \pm \sqrt{17}}{4}$
c) $(x+6)^{2}=12$
d) $8+5.6 x-1.2 x^{2}=0$
$x^{2}+12 x+24=0$
I use the formula because I
cannot factor. Substitute:
$a=1, b=12, c=24$
in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-12 \pm \sqrt{12^{2}-4(1)(24)}}{2(1)}$
I use the formula because I
cannot factor. Substitute:
$a=-1.2, b=5.6, c=8$
in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-5.6 \pm \sqrt{5.6^{2}-4(-1.2)(8)}}{2(-1.2)}$
$x=\frac{-12 \pm \sqrt{48}}{2}$
$x=\frac{-12 \pm 4 \sqrt{3}}{2}$
$x=\frac{-5.6 \pm \sqrt{69.76}}{-2.4}$
$x=\frac{5.6 \pm \sqrt{69.76}}{2.4}$
$x=-6 \pm 2 \sqrt{3}$
11. Solve each quadratic equation. Give the solution to 3 decimal places.
a) $\frac{1}{3} x^{2}-3 x+\frac{1}{4}=0$

Multiply by 12.
$4 x^{2}-36 x+3=0$
Substitute:
$a=4, b=-36, c=3$
in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{36 \pm \sqrt{(-36)^{2}-4(4)(3)}}{2(4)}$
$x=\frac{36 \pm \sqrt{1248}}{8}$
$x=\frac{36+\sqrt{1248}}{8}$
so, $x \doteq 8.916$
Or, $x=\frac{36-\sqrt{1248}}{8}$
so, $x \doteq 0.084$
b) $-2 x^{2}+\frac{3}{2} x-\frac{4}{5}=0$

Multiply by 10.
$-20 x^{2}+15 x-8=0$
Substitute:
$a=-20, b=15, c=-8$
in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-15 \pm \sqrt{15^{2}-4(-20)(-8)}}{2(-20)}$
$x=\frac{-15 \pm \sqrt{-415}}{-40}$
There are no real roots.
c) $4.9 x^{2}+12 x-0.8=0$

Substitute:
$a=4.9, b=12, c=-0.8$
in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-12 \pm \sqrt{12^{2}-4(4.9)(-0.8)}}{2(4.9)}$
$x=\frac{-12 \pm \sqrt{159.68}}{9.8}$
$x=\frac{-12+\sqrt{159.68}}{9.8}$
so, $x \doteq 0.065$
Or, $x=\frac{-12-\sqrt{159.68}}{9.8}$
so, $x \doteq-2.514$
d) $2.1 x^{2}=1.2 x+3$

Substitute:
$a=2.1, b=-1.2, c=-3$
in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{1.2 \pm \sqrt{(-1.2)^{2}-4(2.1)(-3)}}{2(2.1)}$
$x=\frac{1.2 \pm \sqrt{26.64}}{4.2}$
$x=\frac{1.2+\sqrt{26.64}}{4.2}$
so, $x \doteq 1.515$
Or, $x=\frac{1.2-\sqrt{26.64}}{4.2}$
so, $x \doteq-0.943$
12. Solve each radical equation. Check for extraneous roots.
a) $2+\sqrt{5 x}=3 x$
b) $2 x=\sqrt{2 x+10}-3$

$$
\sqrt{5 x}=3 x-2
$$

$$
2 x+3=\sqrt{2 x+10}
$$

$$
(\sqrt{5 x})^{2}=(3 x-2)^{2}
$$

$$
(2 x+3)^{2}=(\sqrt{2 x+10})^{2}
$$

$$
5 x=9 x^{2}-12 x+4 \quad 4 x^{2}+12 x+9=2 x+10
$$

$$
9 x^{2}-17 x+4=0
$$

$$
4 x^{2}+10 x-1=0
$$

Substitute:
Substitute:
$a=9, b=-17, c=4$
$a=4, b=10, c=-1$
in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{17 \pm \sqrt{(-17)^{2}-4(9)(4)}}{2(9)}$
$x=\frac{-10 \pm \sqrt{10^{2}-4(4)(-1)}}{2(4)}$
$x=\frac{17 \pm \sqrt{145}}{18}$
$x=\frac{-10 \pm \sqrt{116}}{8}$
Use a calculator to check:
The root is: $x=\frac{17+\sqrt{145}}{18}$
$x=\frac{-10 \pm 2 \sqrt{29}}{8}$
$x=\frac{-5 \pm \sqrt{29}}{4}$

Use a calculator to check:
The root is: $x=\frac{-5+\sqrt{29}}{4}$
13. a) Solve this equation using each strategy below: $x^{2}-10 x-24=0$
i) the quadratic formula
ii) completing the square

$$
x^{2}-10 x-24=0
$$

Substitute:
$a=1, b=-10, c=-24$
in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{10 \pm \sqrt{(-10)^{2}-4(1)(-24)}}{2(1)}$
$x=\frac{10 \pm \sqrt{196}}{2}$
$x=\frac{10 \pm 14}{2}$
$x=\frac{10+14}{2}=12$
Or, $x=\frac{10-14}{2}=-2$
iii) factoring $x^{2}-10 x-24=0$

$$
\begin{aligned}
& (x-12)(x+2)=0 \\
& x=12 \text { or } x=-2
\end{aligned}
$$

b) Which strategy do you prefer? Is it the most efficient? Explain.

Sample response: I prefer factoring; it is the most efficient because it takes less time and less space.
14. A person is standing on a bridge over a river. She throws a pebble upward. The height of the pebble above the river, h metres, is given by the formula $h=26+9 t-4.9 t^{2}$, where t is the time in seconds after the pebble is thrown.
a) When will the pebble be 20 m above the river? Give the answer to the nearest tenth of a second.

In $h=26+9 t-4.9 t^{2}$, substitute $h=20$, then solve for t.
$20=26+9 t-4.9 t^{2}$
$0=6+9 t-4.9 t^{2}$
Substitute: $a=-4.9, b=9, c=6$ in: $t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$t=\frac{-9 \pm \sqrt{9^{2}-4(-4.9)(6)}}{2(-4.9)}$
$t=\frac{9 \pm \sqrt{198.6}}{9.8}$
Ignore the negative root since t cannot be negative.
$t=\frac{9+\sqrt{198.6}}{9.8}$
$t=2.3563$. .
The pebble is 20 m above the river after approximately 2.4 s .
b) When will the pebble be 30 m above the river? Give the answer to the nearest tenth of a second.

In $h=26+9 t-4.9 t^{2}$, substitute $h=30$, then solve for t.
$30=26+9 t-4.9 t^{2}$
$0=-4+9 t-4.9 t^{2}$
Substitute: $a=-4.9, b=9, c=-4 \mathrm{in}: t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$t=\frac{-9 \pm \sqrt{9^{2}-4(-4.9)(-4)}}{2(-4.9)}$
$t=\frac{9 \pm \sqrt{2.6}}{9.8}$
$t=\frac{9+\sqrt{2.6}}{9.8}$, or $1.0829 \ldots$
$t=\frac{9-\sqrt{2.6}}{9.8}$, or $0.7538 \ldots$
The pebble is 30 m above the river after approximately 0.8 s and 1.1 s .
c) Why are there two answers for part b, but only one answer for part a?
There are two answers for part b because the stone is 30 m above the river on its way up and on its way down. There is only one answer for part a because the stone is only 20 m above the river on its way down.
15. A car was travelling at a constant speed of $19 \mathrm{~m} / \mathrm{s}$, then accelerated for 10 s . The distance travelled during this time, d metres, is given by the formula $d=19 t+0.7 t^{2}$, where t is the time in seconds since the acceleration began. How long did it take the car to travel 200 m ? Give the answer to the nearest tenth of a second.
$\operatorname{In} d=19 t+0.7 t^{2}$, substitute $d=200$, then solve for t.
$200=19 t+0.7 t^{2}$
$0=-200+19 t+0.7 t^{2}$
Substitute: $a=0.7, b=19, c=-200$ in: $t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$t=\frac{-19 \pm \sqrt{19^{2}-4(0.7)(-200)}}{2(0.7)}$
$t=\frac{-19 \pm \sqrt{921}}{1.4}$
Ignore the negative root since t cannot be negative.
$t=\frac{-19+\sqrt{921}}{1.4}$
$t=8.1057$...
The car travelled 200 m in approximately 8.1 s .
16. Josie's rectangular garden measures 9 m by 13 m . She wants to double the area of her garden by adding equal lengths to both dimensions. Determine this length to the nearest centimetre.

Let the length added be x metres.
The new width, in metres, is: $x+9$
The new length, in metres, is: $x+13$
The new area, in square metres is: $(x+9)(x+13)$
The original area is: (9)(13), or $117 \mathrm{~m}^{2}$
The new area is: $2\left(117 \mathrm{~m}^{2}\right)=234 \mathrm{~m}^{2}$
An equation is: $(x+9)(x+13)=234$
$x^{2}+22 x+117-234=0$

$$
x^{2}+22 x-117=0
$$

Substitute: $a=1, b=22, c=-117$ in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-22 \pm \sqrt{22^{2}-4(1)(-117)}}{2(1)}$
$x=\frac{-22 \pm \sqrt{952}}{2}$
Ignore the negative root since x cannot be negative.
$x=\frac{-22+\sqrt{952}}{2}$
$x=4.4272 . .$.
The length added is approximately 4.43 m .
17. a) Solve this equation $\frac{1}{2} x^{2}-\frac{3}{4} x-1=0$ in the two ways described below:
i) Substitute the given coefficients and constant in the quadratic formula.

$$
\begin{aligned}
& \frac{1}{2} x^{2}-\frac{3}{4} x-1=0 \\
& \text { Substitute: } a=\frac{1}{2}, b=-\frac{3}{4}, c=-1 \mathrm{in}: \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{\frac{3}{4} \pm \sqrt{\left(-\frac{3}{4}\right)^{2}-4\left(\frac{1}{2}\right)(-1)}}{2\left(\frac{1}{2}\right)} \\
& x=\frac{3}{4} \pm \sqrt{\frac{41}{16}} \\
& x=\frac{3}{4} \pm \frac{\sqrt{41}}{4}
\end{aligned}
$$

ii) Multiply the equation by a common denominator to remove the fractions, then substitute in the quadratic formula.

$$
\begin{aligned}
& \frac{1}{2} x^{2}-\frac{3}{4} x-1=0 \quad \text { Multiply by } 4 . \\
& 2 x^{2}-3 x-4=0
\end{aligned}
$$

$$
\text { Substitute: } a=2, b=-3, c=-4 \mathrm{in}: x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{3 \pm \sqrt{(-3)^{2}-4(2)(-4)}}{2(2)}
$$

$$
x=\frac{3 \pm \sqrt{41}}{4}
$$

b) Which strategy in part a do you prefer? Explain why.

I prefer the strategy in part ii because it is easier to work with integers than fractions.
18. This quadratic equation has only one root: $2 x^{2}+6 x+d=0$

Use the quadratic formula to determine the value of d. Explain your strategy.
$2 x^{2}+6 x+d=0$
Substitute: $a=2, b=6, c=d$ in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-6 \pm \sqrt{6^{2}-4(2)(d)}}{2(2)}$
The equation has only one root, so the radicand must be 0 .

$$
\begin{aligned}
36-8 d & =0 \\
d & =4.5
\end{aligned}
$$

19. a) Solve this quadratic equation by expanding, simplifying, then applying the quadratic formula: $2(x-5)^{2}-7(x-5)-2=0$
$2 x^{2}-20 x+50-7 x+35-2=0$

$$
2 x^{2}-27 x+83=0
$$

Substitute: $a=2, b=-27, c=83$ in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{27 \pm \sqrt{(-27)^{2}-4(2)(83)}}{2(2)}$
$x=\frac{27 \pm \sqrt{65}}{4}$
b) Solve the equation in part a using the quadratic formula without expanding.
$2(x-5)^{2}-7(x-5)-2=0$
Substitute: $a=2, b=-7, c=-2 \mathrm{in}: x-5=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x-5=\frac{7 \pm \sqrt{(-7)^{2}-4(2)(-2)}}{4}$
$x-5=\frac{7 \pm \sqrt{65}}{4}$
$x=5+\frac{7 \pm \sqrt{65}}{4}$
$x=\frac{27 \pm \sqrt{65}}{4}$
20. a) Is this equation quadratic: $x^{4}+x^{2}=1$? Justify your response.

The equation is not quadratic because it contains an x^{4}-term.
b) Describe a strategy you could use to solve the equation in part a.

Write the equation as: $\left(x^{2}\right)^{2}+\left(x^{2}\right)-1=0$, then use the quadratic formula.
c) Solve the equation in part a.

Substitute: $a=1, b=1, c=-1 \mathrm{in}: x^{2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x^{2}=\frac{-1 \pm \sqrt{1^{2}-4(1)(-1)}}{2(1)}$
$x^{2}=\frac{-1 \pm \sqrt{5}}{2}$ Since x^{2} is positive, ignore the negative root.
$x= \pm \sqrt{\frac{-1+\sqrt{5}}{2}}$

