Lesson 3.5 Exercises, pages 232-238

A
4. Calculate the value of the discriminant for each quadratic equation.
a) $5 x^{2}-9 x+4=0$
In $b^{2}-4 a c$, substitute:
$a=5, b=-9, c=4$
$b^{2}-4 a c=(-9)^{2}-4(5)(4)$

$$
=1
$$

b) $3 x^{2}+7 x-2=0$
In $b^{2}-4 a c$, substitute:
$a=3, b=7, c=-2$
$b^{2}-4 a c=(7)^{2}-4(3)(-2)$
$=73$
c) $18 x^{2}-12 x=0$
d) $6 x^{2}+7=0$
In $b^{2}-4 a c$, substitute:
$a=18, b=-12, c=0$
$b^{2}-4 a c=(-12)^{2}-4(18)(0)$
In $b^{2}-4 a c$, substitute:
$a=6, b=0, c=7$
$b^{2}-4 a c=(0)^{2}-4(6)(7)$ $=-168$
5. The values of the discriminant for some quadratic equations are given. How many roots does each equation have?
a) $b^{2}-4 a c=36$

The discriminant is positive, so there are 2 real roots.
b) $b^{2}-4 a c=80$

The discriminant is positive, so there are 2 real roots.
c) $b^{2}-4 a c=0$

The discriminant is 0 , so there is 1 real root.
d) $b^{2}-4 a c=-4$

The discriminant is negative, so there are no real roots.
6. The values of the discriminant for some quadratic equations are given, where a, b, and c are integers. In each case, are the roots rational or irrational and can the equation be solved by factoring?
a) $b^{2}-4 a c=45$

The square root of the discriminant is irrational, so the roots are irrational and the equation cannot be solved by factoring.
b) $b^{2}-4 a c=-16$

The square root of the discriminant is not a real number, so there are no real roots.
c) $b^{2}-4 a c=100$

The square root of the discriminant is rational, so the roots are rational and the equation can be solved by factoring.
d) $b^{2}-4 a c=0$

The discriminant is 0 , so the root is rational and the equation can be solved by factoring.

B
7. Without solving each equation, determine whether it has one, two, or no real roots. Justify your answer.
a) $2 x^{2}-9 x+4=0$

In $b^{2}-4 a c$, substitute: $a=2, b=-9, c=4$
$b^{2}-4 a c=(-9)^{2}-4(2)(4)$
$=49$
Since $b^{2}-4 a c>0$, the equation has 2 real roots.
b) $-x^{2}-7 x+5=0$
$\ln b^{2}-4 a c$, substitute: $a=-1, b=-7, c=5$

$$
\begin{aligned}
b^{2}-4 a c & =(-7)^{2}-4(-1)(5) \\
& =69
\end{aligned}
$$

Since $b^{2}-4 a c>0$, the equation has 2 real roots.
c) $2 x^{2}+16 x+32=0$

In $b^{2}-4 a c$, substitute: $a=2, b=16, c=32$
$b^{2}-4 a c=16^{2}-4(2)(32)$

$$
=0
$$

Since $b^{2}-4 a c=0$, the equation has 1 real root.
d) $2.55 x^{2}-1.4 x-0.2=0$

In $b^{2}-4 a c$, substitute: $a=2.55, b=-1.4, c=-0.2$
$b^{2}-4 a c=(-1.4)^{2}-4(2.55)(-0.2)$
$=4$
Since $b^{2}-4 a c>0$, the equation has 2 real roots.
8. Determine the values of k for which each equation has two real roots, then write a possible equation.
a) $k x^{2}+6 x-1=0$
b) $6 x^{2}-3 x+k=0$

For an equation to have 2 real roots, $b^{2}-4 a c>0$
$a=k, b=6, c=-1$
$a=6, b=-3, c=k$
So, $6^{2}-4(k)(-1)>0$
So, $(-3)^{2}-4(6)(k)>0$

$$
\begin{gathered}
4 k>-36 \\
k>-9
\end{gathered}
$$

$$
\begin{aligned}
24 k & <9 \\
k & <\frac{9}{24^{\prime}} \text { or } \frac{3}{8}
\end{aligned}
$$

Sample response:
$10 x^{2}+6 x-1=0$
Sample response:
$6 x^{2}-3 x-1=0$
9. Determine the values of k for which each equation has exactly one real root, then write a possible equation.
a) $2 x^{2}-k x+18=0$
b) $k x^{2}-10 x-3=0$

For an equation to have exactly 1 real root, $b^{2}-4 a c=0$
$a=2, b=-k, c=18 \quad a=k, b=-10, c=-3$
So,

$$
\begin{aligned}
(-k)^{2}-4(2)(18) & =0 \\
k^{2} & =144 \\
k & = \pm 12
\end{aligned}
$$

Sample response:

> So,

$$
\begin{aligned}
(-10)^{2}-4(k)(-3) & =0 \\
12 k & =-100 \\
k & =-\frac{100}{12}, \text { or }-\frac{25}{3}
\end{aligned}
$$

$2 x^{2}-12 x+18=0$
or, $x^{2}-6 x+9=0$
Sample response:
$-\frac{25}{3} x^{2}-10 x-3=0$
or, $25 x^{2}+30 x+9=0$
10. Determine the values of k for which each equation has no real roots, then write a possible equation.
a) $k x^{2}-9 x-3=0$

For an equation to have no real roots, $b^{2}-4 a c<0$
Substitute: $a=k, b=-9, c=-3$
$(-9)^{2}-4(k)(-3)<0$

$$
12 k<-81
$$

$$
k<-\frac{81}{12} \text {, or }-\frac{27}{4}
$$

Sample response: $-10 x^{2}-9 x-3=0$
b) $7 x^{2}-6 x+k=0$

In $b^{2}-4 a c<0$, substitute: $a=7, b=-6, c=k$
$(-6)^{2}-4(7)(k)<0$

$$
\begin{aligned}
28 k & >36 \\
k & >\frac{36}{28^{\prime}} \text { or } \frac{9}{7}
\end{aligned}
$$

Sample response: $7 x^{2}-6 x+2=0$
11. Can each equation be solved by factoring? If your answer is yes, solve it by factoring. If your answer is no, solve it using a different strategy.
a) $7 x^{2}-8 x-12=0$

An equation factors if its discriminant is a perfect square.
In $b^{2}-4 a c$, substitute: $a=7, b=-8, c=-12$
$b^{2}-4 a c=(-8)^{2}-4(7)(-12)$
$=400 \quad$ This is a perfect square.
The equation can be solved by factoring.

$$
\begin{array}{r}
7 x^{2}-8 x-12=0 \\
(7 x+6)(x-2)=0 \\
x=-\frac{6}{7} \text { or } x=2
\end{array}
$$

b) $14 x^{2}-63 x-70=0$

Divide by 7 .
$2 x^{2}-9 x-10=0$
In $b^{2}-4 a c$, substitute: $a=2, b=-9, c=-10$
$b^{2}-4 a c=(-9)^{2}-4(2)(-10)$
$=161$ This is not a perfect square.
The equation cannot be solved by factoring.
Substitute: $a=2, b=-9$ in: $x=\frac{-b \pm \sqrt{161}}{2 a}$
$x=\frac{9 \pm \sqrt{161}}{2(2)}$
$x=\frac{9 \pm \sqrt{161}}{4}$
12. For each equation below:
i) Determine the value of the discriminant.
ii) Use the value of the discriminant to choose a solution strategy, then solve the equation.
a) $2 x^{2}-6 x+1=0$
b) $8 x^{2}-3 x-5=0$
i) $\ln b^{2}-4 a c$, substitute:

$$
a=2, b=-6, c=1
$$

$b^{2}-4 a c=(-6)^{2}-4(2)(1)$

$$
=28
$$

ii) This is not a perfect square, so use the quadratic formula.
Substitute: $a=2, b=-6 \mathrm{in}$:
i) $\ln b^{2}-4 a c$, substitute:

$$
\begin{aligned}
a=8, b & =-3, c=-5 \\
b^{2}-4 a c & =(-3)^{2}-4(8)(-5) \\
& =169
\end{aligned}
$$

ii) This is a perfect square, so use factoring.

$$
8 x^{2}-3 x-5=0
$$

$$
\begin{array}{ll}
x=\frac{-b \pm \sqrt{28}}{2 a} & (8 x+5)(x-1)=0 \\
x=\frac{6 \pm \sqrt{28}}{2(2)} & x=-\frac{5}{8} \text { or } x=1 \\
x=\frac{3 \pm \sqrt{7}}{2} &
\end{array}
$$

13. A model rocket is launched. Its height, h metres, after t seconds is described by the formula $h=23 t-4.9 t^{2}$. Without solving an equation, determine whether the rocket reaches each height.
a) 20 m
$\ln h=23 t-4.9 t^{2}$, substitute:
$h=20$
$20=23 t-4.9 t^{2}$
$0=-20+23 t-4.9 t^{2}$
If the rocket reaches a height of 20 m , then the equation has real roots.
$\ln b^{2}-4 a c$, substitute:
$a=-4.9, b=23, c=-20$
$b^{2}-4 a c=23^{2}-4(-4.9)(-20)$
$=137$ $=137$

Since the discriminant is positive, the equation has real roots, and the rocket reaches a height of 20 m .
b) 30 m

In $h=23 t-4.9 t^{2}$, substitute:
$h=30$
$30=23 t-4.9 t^{2}$
$0=-30+23 t-4.9 t^{2}$
If the rocket reaches a height of 30 m , then the equation has real roots.
$\ln b^{2}-4 a c$, substitute:
$a=-4.9, b=23, c=-30$
$b^{2}-4 a c=23^{2}-4(-4.9)(-30)$ $=-59$
Since the discriminant is negative, the equation has no real roots, and the rocket does not reach a height of 30 m .
14. Create three different quadratic equations whose discriminant is 64 .

Explain your strategy. What is true about these three equations?
Sample response:
Use guess and test to determine 3 values of a, b, and c so that:
$b^{2}-4 a c=64 \quad$ Substitute: $b=0$
Then $-4 a c=64$, which is satisfied by $a=-4$ and $c=4$
So, one equation is: $-4 x^{2}+4=0$
$b^{2}-4 a c=64 \quad$ Substitute: $b=4$
Then $16-4 a c=64$, and $-4 a c=48$, which is satisfied by $a=-3$ and $c=4$
So, another equation is: $-3 x^{2}+4 x+4=0$
$b^{2}-4 a c=64 \quad$ Substitute: $b=2$
Then $4-4 a c=64$, and $-4 a c=60$, which is satisfied by $a=5$ and $c=-3$
So, another equation is: $5 x^{2}+2 x-3=0$
All 3 equations have 2 rational real roots.

C
15. Consider the equation $5 x^{2}+6 x+k=0$. Determine two positive values of k for which this equation has two rational roots.

To be able to factor, the discriminant must be a perfect square.
In $b^{2}-4 a c$, substitute: $a=5, b=6, c=k$
$6^{2}-4(5)(k)=36-20 k$
Use guess and test.
One perfect square is 16 . Another perfect square is 4.

$$
\begin{array}{rlrl}
36-20 k & =16 & 36-20 k & =4 \\
20 k & =20 & 20 k & =32 \\
k & =1 & k & =\frac{32}{20}, \text { or } 1.6
\end{array}
$$

16. Create a quadratic equation so that a, b, and c are real numbers; the value of the discriminant is a perfect square; but the roots are not rational. Justify your solution by determining the value of the discriminant and the roots of the equation.

Sample response: The equation has the form $a x^{2}+b x+c=0$
Consider the quadratic formula:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
If the roots are not rational, then a or b is irrational.
Use guess and test. Suppose $b=\sqrt{5}$.
Then $b^{2}-4 a c$ must be a perfect square.
Substitute: $b=\sqrt{5}$
$5-4 a c$ must be a perfect square, such as 25 .
$5-4 a c=25$
$4 a c=-20$
$a c=-5$, which is satisfied by $a=1, c=-5$
An equation is: $x^{2}+\sqrt{5} x-5=0$
The discriminant is 25 .
The roots are: $x=\frac{-\sqrt{5} \pm 5}{2}$
17. Consider the quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
a) Write expressions for the two roots of the quadratic equation $a x^{2}+b x+c=0$.

The two roots are: $x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ and $x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$
b) Add the expressions. How is this sum related to the coefficients of the quadratic equation?
$\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}+\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 b}{2 a}$, or $-\frac{b}{a}$
The sum of the roots is the opposite of the quotient of the coefficient of x and the coefficient of x^{2}.
c) Multiply the expressions. How is this product related to the coefficients of the quadratic equation?
$\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right)\left(\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\right)$
$=\frac{b^{2}-\left(b^{2}-4 a c\right)}{4 a^{2}}$
$=\frac{4 a c}{4 a^{2}}$ or $\frac{c}{a}$
The product of the roots is the quotient of the constant term and the coefficient of x^{2}.
d) Use the results from parts b and c to write an equation whose roots are $x=-3 \pm \sqrt{11}$.

$$
\begin{aligned}
&-\frac{b}{a}=(-3+\sqrt{11})+(-3-\sqrt{11}) \\
&-\frac{b}{a}=-6, \text { or } \frac{-6}{1} \\
& \frac{c}{a}=(-3+\sqrt{11})(-3-\sqrt{11}) \\
&=9-11 \\
& \frac{c}{a}=-2, \text { or } \frac{-2}{1} \\
& \text { So, } a=1, b=6, \text { and } c=-2 \\
& \text { An equation is: } x^{2}+6 x-2=0
\end{aligned}
$$

