Checkpoint: Assess Your Understanding, pages 197–199

3.1

1. Multiple Choice Which expression is the factored form of $3x^2 + 11x - 4$?

A. $(3x + 4)(x - 1)$	B. $(3x + 1)(x - 4)$
(3x-1)(x+4)	D. $(3x - 4)(x + 1)$

2. Factor.

a)
$$36x^2 - 49y^2$$

= $(6x)^2 - (7y)^2$
= $(6x + 7y)(6x - 7y)$
b) $0.5x^2 - 3.5x + 5$
= $0.5(x^2 - 7x + 10)$
= $0.5(x - 2)(x - 5)$

c)
$$10x^2 + 29x - 21$$

= $10x^2 + 35x - 6x - 21$
= $\frac{1}{5}\left(x^2 - \frac{1}{180}y^2\right)$
= $5x(2x + 7) - 3(2x + 7)$
= $\frac{1}{5}\left(x + \frac{1}{6}y\right)\left(x - \frac{1}{6}y\right)$
= $(5x - 3)(2x + 7)$

3. Factor.

a)
$$(7x + 4)^2 - (3y - 2)^2$$

= $[(7x + 4) + (3y - 2)][(7x + 4) - (3y - 2)]$
= $[7x + 4 + 3y - 2][7x + 4 - 3y + 2]$
= $(7x + 3y + 2)(7x - 3y + 6)$

b)
$$3(2x - 1)^2 + 14(2x - 1) + 8$$

= $[3(2x - 1) + 2][(2x - 1) + 4]$
= $(6x - 3 + 2)(2x - 1 + 4)$
= $(6x - 1)(2x + 3)$

4. Determine whether 2x - 5 is a factor of each polynomial.

a)
$$10x^2 + 23x - 5$$

Write the trinomial as:
 $(2x - 5)(5x + b)$
 $= 10x^2 + (2b - 25)x - 5b$
Equate constant terms.
 $-5b = -5$, so $b = 1$
Check:
 $(2x - 5)(5x + 1)$
 $= 10x^2 - 23x - 5$
So, $2x - 5$ is not a factor.
b) $6x^2 - 17x + 5$
Write the trinomial as:
 $(2x - 5)(3x + b)$
 $= 6x^2 + (2b - 15)x - 5b$
Equate constant terms.
 $-5b = 5$, so $b = -1$
Check:
 $(2x - 5)(5x + 1)$
 $= 6x^2 - 17x + 5$
So, $2x - 5$ is not a factor.

3.2

5. Multiple Choice Which values of x are solutions of $3x^2 + 2x = 8$?

A
$$x = \frac{4}{3}, x = -2$$
B $x = \frac{3}{4}, x = -2$ **C** $x = \frac{2}{3}, x = -4$ **D** $x = \frac{3}{2}, x = -4$

6. Solve by factoring, then verify each solution.

a)
$$x^2 - 8x - 33 = 0$$

 $(x - 11)(x + 3) = 0$
Either $x - 11 = 0$,
then $x = 11$;
or $x + 3 = 0$, then $x = -3$
b) $8x^2 + 22x - 21 = 0$
 $(2x + 7)(4x - 3) = 0$
Either $2x + 7 = 0$,
then $x = -3.5$; or
 $4x - 3 = 0$, then $x = 0.75$

7. Solve each equation.

a)
$$(x - 2)(x + 3) = 24$$

 $x^{2} + x - 6 - 24 = 0$
 $x^{2} + x - 30 = 0$
 $(x - 5)(x + 6) = 0$
Either $x - 5 = 0$, then $x = 5$;
 $0 + 6 = 0$, then $x = -6$
b) $5x^{2} - 20x = x^{2} + 8x - 49$
 $5x^{2} - 20x - x^{2} - 8x + 49 = 0$
 $4x^{2} - 28x + 49 = 0$
 $(2x - 7)(2x - 7) = 0$

8. Solve each equation, then verify the solution.

a)
$$\sqrt{4x} + 3 = x$$

 $\sqrt{4x} = x - 3$
 $(\sqrt{4x})^2 = (x - 3)^2$
 $4x = x^2 - 6x + 9$
 $0 = x^2 - 10x + 9$
 $0 = (x - 9)(x - 1)$
Either $x - 9 = 0$, then $x = 9$;
 1 used mental math to verify.
 $x \neq 1$; the root is $x = 9$
b) $\sqrt{2x} - 7 + 5 = x$
 $\sqrt{2x - 7} = x - 5$
 $(\sqrt{2x - 7})^2 = (x - 5)^2$
 $2x - 7 = x^2 - 10x + 25$
 $0 = x^2 - 12x + 32$
 $0 = (x - 4)(x - 8)$
Either $x - 4 = 0$, then $x = 4$;
 1 used mental math to verify.
 $x \neq 4$; the root is $x = 8$

9. The diagonal of a rectangle is 17 cm long. The rectangle is 7 cm longer than it is wide. What are the dimensions of the rectangle?

Let the width of the rectangle be x centimetres. Then the length of the rectangle, in centimetres, is: x + 7Use the Pythagorean Theorem to write an equation. $x^2 + (x + 7)^2 = 17^2$ $x^2 + x^2 + 14x + 49 - 289 = 0$ $2x^2 + 14x - 240 = 0$ Divide each term by 2. $x^2 + 7x - 120 = 0$ (x + 15)(x - 8) = 0Either x + 15 = 0 or x - 8 = 0 x = -15 x = 8Since the width cannot be negative, the width is 8 cm, and the length is: (8 + 7) cm, or 15 cm