Checkpoint: Assess Your Understanding, pages 197-199

3.1

1. Multiple Choice Which expression is the factored form of $3 x^{2}+11 x-4$?
A. $(3 x+4)(x-1)$
B. $(3 x+1)(x-4)$
C. $(3 x-1)(x+4)$
D. $(3 x-4)(x+1)$
2. Factor.
a) $36 x^{2}-49 y^{2}$
b) $0.5 x^{2}-3.5 x+5$
$=(6 x)^{2}-(7 y)^{2}$
$=0.5\left(x^{2}-7 x+10\right)$
$=(6 x+7 y)(6 x-7 y)$
$=0.5(x-2)(x-5)$
c) $10 x^{2}+29 x-21$
d) $\frac{1}{5} x^{2}-\frac{1}{180} y^{2}$

$$
\begin{array}{ll}
=10 x^{2}+35 x-6 x-21 & =\frac{1}{5}\left(x^{2}-\frac{1}{36} y^{2}\right) \\
=5 x(2 x+7)-3(2 x+7) & =\frac{1}{5}\left(x+\frac{1}{6} y\right)\left(x-\frac{1}{6} y\right) \\
=(5 x-3)(2 x+7) &
\end{array}
$$

3. Factor.
a) $(7 x+4)^{2}-(3 y-2)^{2}$

$$
\begin{aligned}
& =[(7 x+4)+(3 y-2)][(7 x+4)-(3 y-2)] \\
& =[7 x+4+3 y-2][7 x+4-3 y+2] \\
& =(7 x+3 y+2)(7 x-3 y+6)
\end{aligned}
$$

b) $3(2 x-1)^{2}+14(2 x-1)+8$

$$
=[3(2 x-1)+2][(2 x-1)+4]
$$

$$
=(6 x-3+2)(2 x-1+4)
$$

$$
=(6 x-1)(2 x+3)
$$

4. Determine whether $2 x-5$ is a factor of each polynomial.
a) $10 x^{2}+23 x-5$
b) $6 x^{2}-17 x+5$

Write the trinomial as:
Write the trinomial as:
$(2 x-5)(5 x+b)$
$(2 x-5)(3 x+b)$
$=10 x^{2}+(2 b-25) x-5 b$
$=6 x^{2}+(2 b-15) x-5 b$
Equate constant terms.
Equate constant terms.
$-5 b=-5$, so $b=1$
Check:
$-5 b=5$, so $b=-1$
Check:
$(2 x-5)(5 x+1)$
$(2 x-5)(3 x-1)$
$=10 x^{2}-23 x-5$
$=6 x^{2}-17 x+5$
So, $2 x-5$ is not a factor.
So, $2 x-5$ is a factor.

3.2

5. Multiple Choice Which values of x are solutions of $3 x^{2}+2 x=8$?
(A. $x=\frac{4}{3}, x=-2$
B. $x=\frac{3}{4}, x=-2$
C. $x=\frac{2}{3}, x=-4$
D. $x=\frac{3}{2}, x=-4$
6. Solve by factoring, then verify each solution.
a) $x^{2}-8 x-33=0$
b) $8 x^{2}+22 x-21=0$
$(x-11)(x+3)=0$
Either $x-11=0$,
then $x=11$;
or $x+3=0$, then $x=-3$
$(2 x+7)(4 x-3)=0$
Either $2 x+7=0$,
then $x=-3.5$; or
$4 x-3=0$, then $x=0.75$
7. Solve each equation.
a) $(x-2)(x+3)=24$
$x^{2}+x-6-24=0$
$x^{2}+x-30=0$
b) $5 x^{2}-20 x=x^{2}+8 x-49$

$$
\begin{array}{r}
5 x^{2}-20 x-x^{2}-8 x+49=0 \\
4 x^{2}-28 x+49=0 \\
(2 x-7)(2 x-7)=0
\end{array}
$$

Either $x-5=0$, then $x=5 ; \quad 2 x-7=0$, then $x=3.5$ or $x+6=0$, then $x=-6$
8. Solve each equation, then verify the solution.
a) $\sqrt{4 x}+3=x$
b) $\sqrt{2 x-7}+5=x$
$\sqrt{4 x}=x-3$
$(\sqrt{4 x})^{2}=(x-3)^{2}$
$4 x=x^{2}-6 x+9$
$0=x^{2}-10 x+9$

$$
0=(x-9)(x-1)
$$

$$
\begin{aligned}
\sqrt{2 x-7} & =x-5 \\
(\sqrt{2 x-7})^{2} & =(x-5)^{2} \\
2 x-7 & =x^{2}-10 x+25 \\
0 & =x^{2}-12 x+32 \\
0 & =(x-4)(x-8)
\end{aligned}
$$

Either $x-9=0$, then $x=9$;
Either $x-4=0$, then $x=4$; or $x-1=0$, then $x=1$
I used mental math to verify. $x \neq 1$; the root is $x=9$
or $x-8=0$, then $x=8$
I used mental math to verify.
$x \neq 4$; the root is $x=8$
9. The diagonal of a rectangle is 17 cm long. The rectangle is 7 cm longer than it is wide. What are the dimensions of the rectangle?
Let the width of the rectangle be x centimetres.
Then the length of the rectangle, in centimetres, is: $x+7$ Use the Pythagorean Theorem to write an equation.

$$
\begin{array}{rlrl}
x^{2}+(x+7)^{2} & =17^{2} & & \\
x^{2}+x^{2}+14 x+49-289 & =0 & & \\
2 x^{2}+14 x-240 & =0 & \text { Divide each term by } 2 . \\
x^{2}+7 x-120 & =0 & & \\
(x+15)(x-8) & =0 & \\
\text { Either } x+15=0 & \text { or } & x-8=0 \\
x=-15 & & x=8
\end{array}
$$

Since the width cannot be negative, the width is 8 cm , and the length is: $(8+7) \mathrm{cm}$, or 15 cm

