PRACTICE TEST, pages 246-248

1. Multiple Choice Which polynomial has $x-4$ as a factor?
A. $16 x^{2}-8 x+1$
B. $4 x^{2}-8 x-96$
C. $x^{2}-16 y^{2}$
(D. $3 x^{2}-8 x-16$
2. Multiple Choice Which equation has two real roots?
A. $x^{2}+9=6 x$
B. $4 x^{2}-8 x+5=0$
(C. $3 x^{2}-10 x+5=0$
D. $8 x^{2}-x+4=0$
3. Factor each polynomial expression.
a) $3 x^{2}-108$
b) $6 x^{2}-13 x-8$

$$
\begin{aligned}
& =3\left(x^{2}-36\right) \\
& =3(x+6)(x-6)
\end{aligned}
$$

Guess and test factors of 6
with factors of -8 .

$$
=(3 x-8)(2 x+1)
$$

c) $4(4 x-3)^{2}-9(3 y-2)^{2}$
$=\left[2(4 x-3)^{2}\right]-[3(3 y-2)]^{2}$
$=[2(4 x-3)+3(3 y-2)][2(4 x-3)-3(3 y-2)]$
$=(8 x+9 y-12)(8 x-9 y)$
d) $10(3 x-4)^{2}+13(3 x-4)-3$

Guess and test factors of 10 with factors of -3 .

$$
\begin{aligned}
& =[2(3 x-4)+3][5(3 x-4)-1] \\
& =(6 x-5)(15 x-21) \\
& =3(6 x-5)(5 x-7)
\end{aligned}
$$

4. Solve each quadratic equation. Use a different strategy each time.

Verify each solution.
a) $3 x^{2}-10 x+6=0$
b) $4 x^{2}-1=11$
Use completing the square.
Use square roots.

$$
\begin{aligned}
x^{2}-\frac{10}{3} x & =-2 \\
x^{2}-\frac{10}{3} x+\frac{25}{9} & =-2+\frac{25}{9} \\
\left(x-\frac{5}{3}\right)^{2} & =\frac{7}{9} \\
x-\frac{5}{3} & = \pm \sqrt{\frac{7}{9}} \\
x & =\frac{5}{3} \pm \frac{\sqrt{7}}{3}
\end{aligned}
$$

c) $(x+3)(2 x-1)=9$
d) $2.5 x^{2}+1.5 x-5=0$
Use the quadratic formula.
Substitute:

$$
\begin{aligned}
& a=2.5, b=1.5, c=-5 \\
& \text { in: } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-1.5 \pm \sqrt{1.5^{2}-4(2.5)(-5)}}{2(2.5)} \\
& x=\frac{-1.5 \pm \sqrt{52.25}}{5}
\end{aligned}
$$

5. Is it possible to construct a rectangle whose length is 1 cm less than twice its width, and whose area is $40 \mathrm{~cm}^{2}$? If your answer is yes, determine the dimensions of the rectangle to the nearest tenth of a centimetre. If your answer is no, explain why it is not possible.

Let the width of the rectangle be x centimetres.
Then its length is $(2 x-1)$ centimetres.
And its area is $x(2 x-1)$ square centimetres.
If this rectangle can have area $40 \mathrm{~cm}^{2}$, then the equation:
$x(2 x-1)=40$ has real roots.
Solve the equation: $2 x^{2}-x-40=0$
Substitute: $a=2, b=-1, c=-40$ in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(2)(-40)}}{2(2)}$
$x=\frac{1 \pm \sqrt{321}}{4}$
Ignore the negative root because the width cannot be negative.
$x=\frac{1+\sqrt{321}}{4}$
$x=4.7291 .$.
So, the length is: $2(4.7291 \ldots)-1=8.4582 .$. .
A rectangle can be constructed and its dimensions are approximately
4.7 cm by 8.5 cm .
6. Consider the equation $6 x^{2}-10 x+k=0$. Determine the value of k when the equation has exactly one root.
$6 x^{2}-10 x+k=0$
In $b^{2}-4 a c$, substitute: $a=6, b=-10, c=k$
$b^{2}-4 a c=(-10)^{2}-4(6)(k)$

$$
=100-24 k
$$

For exactly 1 real root, $100-24 k=0$

$$
k=\frac{100}{24}, \text { or } \frac{25}{6}
$$

7. A model rocket is launched with an initial speed of $32 \mathrm{~m} / \mathrm{s}$. After t seconds, its height, h metres, is given by this formula:
$h=0.5+32 t-4.9 t^{2}$
a) When will the rocket hit the ground?

When the rocket hits the ground, its height is 0 .
So, in $h=0.5+32 t-4.9 t^{2}$, substitute $h=0$, then solve for t.
$0=0.5+32 t-4.9 t^{2}$
Substitute: $a=-4.9, b=32, c=0.5 \mathrm{in}: t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$t=\frac{-32 \pm \sqrt{32^{2}-4(-4.9)(0.5)}}{2(-4.9)}$
$t=\frac{-32 \pm \sqrt{1033.8}}{-9.8}$, or $\frac{32 \pm \sqrt{1033.8}}{9.8}$
Since t cannot be negative, ignore the negative root.
$t=\frac{32+\sqrt{1033.8}}{9.8}$
$t=6.5462 \ldots$
So, the rocket hits the ground after approximately 6.5 s .
b) Without solving an equation, show that the rocket will not reach a height of 60 m .
If the rocket does not reach a height of 60 m , then the equation $60=0.5+32 t-4.9 t^{2}$ has no real roots.
Write the equation as $0=-59.5+32 t-4.9 t^{2}$
$\ln b^{2}-4 a c$, substitute: $a=-4.9, b=32, c=-59.5$
$b^{2}-4 a c=32^{2}-4(-4.9)(-59.5)$

$$
=-142.2
$$

Since the discriminant is negative, the equation has no real roots.

