PRACTICE TEST, pages 246–248

1. Multiple Choice Which polynomial has x - 4 as a factor?

A. $16x^2 - 8x + 1$	B. $4x^2 - 8x - 96$
C. $x^2 - 16y^2$	D $3x^2 - 8x - 16$

2. Multiple Choice Which equation has two real roots?

A. $x^2 + 9 = 6x$	B. $4x^2 - 8x + 5 = 0$
$(C.)3x^2 - 10x + 5 = 0$	D. $8x^2 - x + 4 = 0$

3. Factor each polynomial expression.

a) $3x^2 - 108$	b) $6x^2 - 13x - 8$
$= 3(x^2 - 36) = 3(x + 6)(x - 6)$	Guess and test factors of 6 with factors of -8 .
	= (3x - 8)(2x + 1)

c)
$$4(4x - 3)^2 - 9(3y - 2)^2$$

= $[2(4x - 3)^2] - [3(3y - 2)]^2$
= $[2(4x - 3) + 3(3y - 2)][2(4x - 3) - 3(3y - 2)]$
= $(8x + 9y - 12)(8x - 9y)$

d) $10(3x - 4)^2 + 13(3x - 4) - 3$ Guess and test factors of 10 with factors of -3. = [2(3x - 4) + 3][5(3x - 4) - 1]= (6x - 5)(15x - 21)= 3(6x - 5)(5x - 7)

4. Solve each quadratic equation. Use a different strategy each time. Verify each solution.

a) $3x^2 - 10x + 6 = 0$ Use completing the square. $x^2 - \frac{10}{3}x = -2$ $x^2 - \frac{10}{3}x + \frac{25}{9} = -2 + \frac{25}{9}$ $(x - \frac{5}{3})^2 = \frac{7}{9}$ $x - \frac{5}{3} = \pm \sqrt{\frac{7}{9}}$ $x = \frac{5}{3} \pm \frac{\sqrt{7}}{3}$ c) (x + 3)(2x - 1) = 9 $2x^{2} + 5x - 12 = 0$ Use factoring. (2x - 3)(x + 4) = 0 x = 1.5 or x = -4d) $2.5x^{2} + 1.5x - 5 = 0$ Use the quadratic formula. Substitute: a = 2.5, b = 1.5, c = -5 $in: x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $x = \frac{-1.5 \pm \sqrt{1.5^{2} - 4(2.5)(-5)}}{2(2.5)}$ $x = \frac{-1.5 \pm \sqrt{52.25}}{5}$

5. Is it possible to construct a rectangle whose length is 1 cm less than twice its width, and whose area is 40 cm²? If your answer is yes, determine the dimensions of the rectangle to the nearest tenth of a centimetre. If your answer is no, explain why it is not possible.

Let the width of the rectangle be x centimetres. Then its length is (2x - 1) centimetres. And its area is x(2x - 1) square centimetres. If this rectangle can have area 40 cm², then the equation: x(2x - 1) = 40 has real roots. Solve the equation: $2x^2 - x - 40 = 0$ Substitute: a = 2, b = -1, c = -40 in: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(2)(-40)}}{2(2)}$ $x = \frac{1 \pm \sqrt{321}}{4}$ Ignore the negative root because the width cannot be negative. $x = \frac{1 + \sqrt{321}}{4}$ x = 4.7291...So, the length is: 2(4.7291...) - 1 = 8.4582...A rectangle can be constructed and its dimensions are approximately 4.7 cm by 8.5 cm.

6. Consider the equation $6x^2 - 10x + k = 0$. Determine the value of k when the equation has exactly one root.

 $6x^{2} - 10x + k = 0$ In $b^{2} - 4ac$, substitute: a = 6, b = -10, c = k $b^{2} - 4ac = (-10)^{2} - 4(6)(k)$ = 100 - 24kFor exactly 1 real root, 100 - 24k = 0 $k = \frac{100}{24}$, or $\frac{25}{6}$

- 7. A model rocket is launched with an initial speed of 32 m/s. After *t* seconds, its height, *h* metres, is given by this formula: $h = 0.5 + 32t - 4.9t^2$
 - **a**) When will the rocket hit the ground?

When the rocket hits the ground, its height is 0. So, in $h = 0.5 + 32t - 4.9t^2$, substitute h = 0, then solve for t. $0 = 0.5 + 32t - 4.9t^2$ Substitute: a = -4.9, b = 32, c = 0.5 in: $t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $t = \frac{-32 \pm \sqrt{32^2 - 4(-4.9)(0.5)}}{2(-4.9)}$ $t = \frac{-32 \pm \sqrt{1033.8}}{-9.8}$, or $\frac{32 \pm \sqrt{1033.8}}{9.8}$ Since t cannot be negative, ignore the negative root. $t = \frac{32 + \sqrt{1033.8}}{9.8}$ t = 6.5462...So, the rocket hits the ground after approximately 6.5 s.

b) Without solving an equation, show that the rocket will not reach a height of 60 m.

If the rocket does not reach a height of 60 m, then the equation $60 = 0.5 + 32t - 4.9t^2$ has no real roots. Write the equation as $0 = -59.5 + 32t - 4.9t^2$ In $b^2 - 4ac$, substitute: a = -4.9, b = 32, c = -59.5 $b^2 - 4ac = 32^2 - 4(-4.9)(-59.5)$ = -142.2

Since the discriminant is negative, the equation has no real roots.