## REVIEW, pages 242-245

## 3.1

1. Is $x-5$ a factor of each trinomial? Justify your answer.
a) $3 x^{2}+3 x-60$
b) $3 x^{2}-13 x-10$

Write the trinomial as:
$(x-5)(3 x+b)$
$=3 x^{2}+(b-15) x-5 b$
Equate constant terms.
$-5 b=-60$, so $b=12$
Check:
Write the trinomial as:
$(x-5)(3 x+b)$
$=3 x^{2}+(b-15) x-5 b$
Equate constant terms.
$-5 b=-10$, so $b=2$
Check:
$(x-5)(3 x+12)$
$=3 x^{2}-3 x-60$
$(x-5)(3 x+2)$
$=3 x^{2}-13 x-10$
So, $x-5$ is a factor.
2. Factor.
a) $0.5 x^{2}-0.4 x-1.2$

$$
=0.1\left(5 x^{2}-4 x-12\right)
$$

Guess and test factors of 5 with factors of -12 .
b) $3(x-3)^{2}+2(x-3)-5$
Guess and test factors of 3 with factors of -5 .
$=[3(x-3)+5][(x-3)-1]$

$$
=0.1(x-2)(5 x+6)
$$

$=(3 x-4)(x-4)$
3. Factor.
a) $81 x^{2}-4 y^{2}$

$$
\begin{aligned}
& =(9 x)^{2}-(2 y)^{2} \\
& =(9 x+2 y)(9 x-2 y)
\end{aligned}
$$

b) $49(x-4)^{2}-9(5 y-2)^{2}$

$$
\begin{aligned}
& =[7(x-4)]^{2}-[3(5 y-2)]^{2} \\
& =[7(x-4)+3(5 y-2)][7(x-4)-3(5 y-2)] \\
& =(7 x+15 y-34)(7 x-15 y-22)
\end{aligned}
$$

## 3.2

4. Solve by factoring. Verify the solutions.
a) $20 x^{2}+3 x-2=0$
b) $6 x^{2}-21 x+18=0$
$(4 x-1)(5 x+2)=0$
$3\left(2 x^{2}-7 x+6\right)=0$
Either $4 x-1=0$;
$3(2 x-3)(x-2)=0$
then $x=0.25$;
Either $2 x-3=0$, then $x=1.5$;
or $5 x+2=0$, then $x=-0.4$
or $x-2=0$, then $x=2$
c) $(x-5)(x+8)=14$
d) $6 x^{2}=8 x$

$$
\begin{array}{r}
x^{2}+3 x-54=0 \\
(x-6)(x+9)=0
\end{array}
$$

$$
6 x^{2}-8 x=0
$$

$$
2 x(3 x-4)=0
$$

$$
\text { Either } x-6=0 \text {, then } x=6
$$

$$
\text { Either } 2 x=0 \text {, then } x=0
$$

$$
\text { or } x+9=0, \text { then } x=-9
$$

$$
\text { or } 3 x-4=0 \text {, then } x=\frac{4}{3}
$$

I used mental math to verify the solutions.
5. Two numbers have a sum of 20 and a product of 84 . Use a quadratic equation to determine the numbers.

Let one number be $x$. Then the other number is $20-x$.
An equation is: $x(20-x)=84$

$$
\begin{aligned}
& 20 x-x^{2}-84=0 \\
& x^{2}-20 x+84=0 \\
& (x-14)(x-6)=0 \\
& x=14 \text { or } x=6
\end{aligned}
$$

The numbers are 14 and 6.

## 3.3

6. Solve each equation.
a) $(2 x+1)^{2}+4=49$
b) $-3+(3-2 x)^{2}=5$

$$
\begin{aligned}
(2 x+1)^{2} & =45 \\
2 x+1 & = \pm \sqrt{45} \\
2 x & =-1 \pm \sqrt{45} \\
x & =\frac{-1 \pm \sqrt{45}}{2}
\end{aligned}
$$

$$
\begin{aligned}
(3-2 x)^{2} & =8 \\
3-2 x & = \pm \sqrt{8} \\
2 x & =3 \pm \sqrt{8} \\
x & =\frac{3 \pm \sqrt{8}}{2}
\end{aligned}
$$

7. Solve each equation by completing the square.
a) $x^{2}+4 x+2=0$

$$
\begin{aligned}
x^{2}+4 x & =-2 \\
x^{2}+4 x+4 & =-2+4 \\
(x+2)^{2} & =2 \\
x+2 & = \pm \sqrt{2} \\
x & =-2 \pm \sqrt{2}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& 3 x^{2}-2 x-1=0 \\
& x^{2}-\frac{2}{3} x=\frac{1}{3} \\
& x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
&\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
& x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
& x=\frac{1}{3} \pm \frac{2}{3} \\
& x=1 \text { or } x=-\frac{1}{3}
\end{aligned}
$$

## 3.4

8. Solve each quadratic equation.
a) $2 x^{2}-6 x+1=0$
Substitute:
$a=2, b=-6, c=1$
in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{6 \pm \sqrt{(-6)^{2}-4(2)(1)}}{2(2)}$
$x=\frac{6 \pm \sqrt{28}}{4}$
$x=\frac{6 \pm 2 \sqrt{7}}{4}$
b) $(x+1)(x+2)=x$
$x^{2}+2 x+2=0$
Substitute: $a=1, b=2, c=2$
in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-2 \pm \sqrt{2^{2}-4(1)(2)}}{2(1)}$
$x=\frac{-2 \pm \sqrt{-4}}{2}$
There are no real roots.
$x=\frac{3 \pm \sqrt{7}}{2}$
9. A truck was travelling at $23 \mathrm{~m} / \mathrm{s}$. It decelerated for 15 s . The distance travelled by the truck, $d$ metres, during this time is given by the formula $d=23 t-0.6 t^{2}$, where $t$ is the time in seconds. How long did it take the truck to travel 60 m ? Give the answer to the nearest tenth of a second.

In $d=23 t-0.6 t^{2}$, substitute: $d=60$, then solve for $t$.

$$
60=23 t-0.6 t^{2}
$$

$0.6 t^{2}-23 t+60=0$
Substitute: $a=0.6, b=-23, c=60$ in: $t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$t=\frac{23 \pm \sqrt{(-23)^{2}-4(0.6)(60)}}{2(0.6)}$
$t=\frac{23 \pm \sqrt{385}}{1.2}$
Either $t=\frac{23+\sqrt{385}}{1.2}$, so $t=35.5$
Or $t=\frac{23-\sqrt{385}}{1.2}$, so $t \doteq 2.8$
Since the truck decelerated for only $15 \mathrm{~s}, t \doteq 35.5 \mathrm{~s}$ is not a solution.
So, the truck took approximately 2.8 s to travel 60 m .

## 3.5

10. Without solving, determine whether each equation has one, two, or no real roots.
a) $2 x^{2}-1.8 x-1.25=0$
b) $-2 x^{2}+3 x-10=0$

In $b^{2}-4 a c$, substitute:
In $b^{2}-4 a c$, substitute:
$a=2, b=-1.8, c=-1.25$
$a=-2, b=3, c=-10$
$b^{2}-4 a c=(-1.8)^{2}-4(2)(-1.25)$
$b^{2}-4 a c=3^{2}-4(-2)(-10)$

$$
=13.24
$$

Since $b^{2}-4 a c>0$, the equation has 2 real roots.

Since $b^{2}-4 a c<0$, the equation has no real roots.
11. Consider the equation $8 x^{2}-5 x+k=0$.

Determine the values of $k$ in each case:
a) The equation has no real roots.
$8 x^{2}-5 x+k=0$
In $b^{2}-4 a c$, substitute: $a=8, b=-5, c=k$
$b^{2}-4 a c=(-5)^{2}-4(8)(k)$

$$
=25-32 k
$$

For no real roots, $25-32 k<0$

$$
k>\frac{25}{32}
$$

b) The equation has exactly one real root.

Use the value of $b^{2}-4 a c$ from part a.
For exactly 1 real root, $25-32 k=0$

$$
k=\frac{25}{32}
$$

c) The equation has two real roots.

Use the value of $b^{2}-4 a c$ from part a. For 2 real roots, $25-32 k>0$

$$
k<\frac{25}{32}
$$

