Lesson 4.1 Exercises, pages 257-261

When approximating answers, round to the nearest tenth.
A
4. Identify the y-intercept of the graph of each quadratic function.
a) $y=-\frac{1}{2} x^{2}+5 x-1$
Use mental math. Substitute $x=0$.

$$
y=-1 \quad y=3
$$

c) $y=-4 x+3 x^{2}$
d) $y=\frac{4}{3} x^{2}$
$y=0$
$y=0$
b) $y=3-14 x+5 x^{2}$
5. State whether the vertex of the graph of each quadratic function is a maximum point or a minimum point.
a) $y=2 x^{2}+5 x-4$
Coefficient of x^{2} is positive. So, parabola opens up. Vertex is a minimum point.
b) $y=5-3 x^{2}$
Coefficient of x^{2} is negative.
So, parabola opens down.
Vertex is a maximum point.
6. Identify whether each table of values represents a linear function, a quadratic function, or neither. Explain how you know.

a) | \boldsymbol{x} | 0 | -1 | -2 | -3 | -4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| \boldsymbol{y} | -3 | -2 | 0 | 4 | 12 |

b) | \boldsymbol{x} | 0 | 2 | 4 | 6 | 8 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| \boldsymbol{y} | 5 | 0 | -7 | -16 | -27 |

The x-coordinates decrease by 1 each time.
First differences:

$$
\begin{array}{r}
-2-(-3)=1 \\
0-(-2)=2 \\
4-0=4 \\
12-4=8
\end{array}
$$

The first differences are not constant, and they do not increase or decrease by the same number. So the function is neither linear nor quadratic.

The x-coordinates increase by 2 each time.
First differences:

$$
\begin{aligned}
0-5 & =-5 \\
-7-0 & =-7 \\
-16-(-7) & =-9 \\
-27-(-16) & =-11
\end{aligned}
$$

The first differences decrease by 2 each time. So, the function is quadratic.
7. Use a table of values to graph each quadratic function below, for the values of x indicated. Determine:
i) the intercepts
ii) the coordinates of the vertex
iii) the equation of the axis of symmetry
iv) the domain of the function
v) the range of the function
a) $y=-x^{2}+12 x-32$
i) x-intercepts: 4, 8

x	3	4	5	6	7	8	9
y	-5	0	3	4	3	0	-5

from equation, y-intercept: -32
ii) vertex: $(6,4)$
iii) axis of symmetry: $x=6$
iv) domain: $x \in \mathbb{R}$
v) range: $y \leq 4, y \in \mathbb{R}$

b) $y=2 x^{2}+8 x+6$

x	-5	-4	-3	-2	-1	0
\boldsymbol{y}	16	6	0	-2	0	6

i) x-intercepts: $-3,-1$ y-intercept: 6
ii) vertex: $(-2,-2)$
iii) axis of symmetry: $x=-2$
iv) domain: $x \in \mathbb{R}$
v) range: $y \geq-2, y \in \mathbb{R}$

c) $y=-3 x^{2}+24 x-45$
i) x-intercepts: 3, 5

\boldsymbol{x}	1	2	3	4	5	6	7
\boldsymbol{y}	-24	-9	0	3	0	-9	-24

$$
\text { from equation, } y \text {-intercept: -45 }
$$

ii) vertex: $(4,3)$
iii) axis of symmetry: $x=4$
iv) domain: $x \in \mathbb{R}$
v) range: $y \leq 3, y \in \mathbb{R}$

8. a) Use a graphing calculator to graph each set of quadratic functions.
i) $y=x^{2}+2 x$
ii) $y=-x^{2}-2 x$
$y=x^{2}+2 x+1$
$y=-x^{2}-2 x-1$
$y=x^{2}+2 x+2$
$y=-x^{2}-2 x-2$
b) How many x-intercepts may a parabola have?
$y=x^{2}+2 x$ has $2 x$-intercepts; $y=x^{2}+2 x+1$ has $1 x$-intercept;
and $y=x^{2}+2 x+2$ has no x-intercepts.
$y=-x^{2}-2 x$ has $2 x$-intercepts; $y=-x^{2}-2 x-1$ has
$1 x$-intercept; and $y=-x^{2}-2 x-2$ has no x-intercepts.
So, a parabola may have 0,1 , or $2 x$-intercepts.
c) How many y-intercepts may a parabola have?

Each of the quadratic functions in part a has $1 y$-intercept.
So, a parabola may have $1 y$-intercept.
9. Use a graphing calculator to graph each quadratic function below.

Determine:
i) the intercepts
ii) the coordinates of the vertex
iii) the equation of the axis of symmetry
iv) the domain of the function \mathbf{v}) the range of the function
a) $y=0.5 x^{2}-2 x+5$
b) $y=-0.75 x^{2}+6 x-15$

Once I had graphed a function, I used the CALC feature, where necessary, to determine the intercepts and the coordinates of the vertex. When the intercepts were approximate, I wrote them to the nearest hundredth.
i) x-intercepts: none y-intercept: 5
ii) vertex: $(2,3)$
iii) axis of symmetry: $x=2$
iv) domain: $x \in \mathbb{R}$
v) range: $y \geq 3, y \in \mathbb{R}$

i) x-intercepts: none y-intercept: $\mathbf{- 1 5}$

ii) vertex: $(4,-3)$
iii) axis of symmetry: $x=4$
iv) domain: $x \in \mathbb{R}$
v) range: $y \leq-3, y \in \mathbb{R}$
c) $y=2 x^{2}-3 x-2.875$
d) $y=-3 x^{2}+10.5 x-8.1875$
i) x-intercepts: about -0.66
i) x-intercepts: about 1.17 and about 2.33 y-intercept: -8.1875

$$
y \text {-intercept: -2.875 }
$$

and about 2.16
ii) vertex: $(0.75,-4)$
iii) axis of symmetry: $x=0.75$
ii) vertex: $(1.75,1)$
iv) domain: $x \in \mathbb{R}$
iii) axis of symmetry: $x=1.75$
v) range: $y \geq-4, y \in \mathbb{R}$
iv) domain: $x \in \mathbb{R}$
v) range: $y \leq 1, y \in \mathbb{R}$
10. A stone is dropped from a bridge over the Peace River. The height of the stone, h metres, above the river, t seconds after it was dropped, is modelled by the equation $h=20-4.9 t^{2}$.
a) Graph the quadratic function, then sketch it below.

I input the equation $y=20-4.9 x^{2}$ in my graphing calculator, then graphed the function.
b) When did the stone hit the river?

To the nearest tenth, the positive t-intercept is 2.0 . So, the stone hit the river approximately 2 s after it was dropped.
c) What is the domain? What does it represent?

The domain is the set of possible t-values; that is, all values between and including 0 and the positive t-intercept. To the nearest tenth of a second, the domain is: $0 \leq t \leq 2.0$. The domain represents the time the stone was in the air.

C
11. Consider the quadratic function $y=a x^{2}+c$. What must be true about a and c in each case?
a) The function has no x-intercepts.

When a is positive, the parabola opens up. So, for the function to have no x-intercepts, its vertex must be above the x-axis; that is $c>0$. When a is negative, the parabola opens down. So, for the function to have no x-intercepts, its vertex must be below the x-axis; that is $c<0$.
b) The function has one x-intercept.

For the function to have one x-intercept, the vertex of the parabola must be on the x-axis. So, $c=0$
c) The function has two x-intercepts.

When a is positive, the parabola opens up. So, for the function to have two x-intercepts, its vertex must lie below the x-axis; that is $c<0$. When a is negative, the parabola opens down. So, for the function to have two x-intercepts, its vertex must lie above the x-axis; that is $c>0$.
12. In Example 3 on page 255, the parabola has one positive t-intercept which is approximately 12.3 . The graph has also a negative t-intercept.
a) Determine this intercept.

Using the CALC feature on my graphing calculator, the negative t-intercept, to the nearest hundredth, is -0.03 .
b) How could you interpret this intercept in terms of the situation modelled by the equation?
The object is fired from a location just above the ground. The numerical value of the negative t-intercept could represent the additional time that it would take the object to reach its maximum height if it were fired from the ground.

