Lesson 4.1 Exercises, pages 257–261

When approximating answers, round to the nearest tenth.

Α

4. Identify the *y*-intercept of the graph of each quadratic function.

```
a) y = -\frac{1}{2}x^2 + 5x - 1 b) y = 3 - 14x + 5x^2
  Use mental math. Substitute x = 0.
                                y = 3
  y = -1
c) y = -4x + 3x^2 d) y = \frac{4}{3}x^2
                               y = 0
```

- 5. State whether the vertex of the graph of each quadratic function is a maximum point or a minimum point.
 - a) $y = 2x^2 + 5x 4$ **b**) $y = 5 - 3x^2$

Coefficient of x^2 is positive. So, parabola opens up. Vertex is a minimum point.

y = 0

Coefficient of x^2 is negative. So, parabola opens down. Vertex is a maximum point.

6. Identify whether each table of values represents a linear function, a quadratic function, or neither. Explain how you know.

a) $x = 0 -1 -2 -3 -4$ b)	x	0	2	4	6	8
y -3 -2 0 4 12	у	5	0	-7	-16	-27
The x-coordinates decrease by 1 each time. First differences: -2 - (-3) = 1 0 - (-2) = 2 4 - 0 = 4 12 - 4 = 8 The first differences are not constant, and they do not increase	The p by 2 First -1 -27	each diffe 0 -7 6 - (first c each	tim erenc – 5 – ((–7 – 16 diffe tim	e. ces: 5 = -) = -) = - rence e. So	—5 —7 —9 —11 es de , the	ase

- **7.** Use a table of values to graph each quadratic function below, for the values of *x* indicated. Determine:
 - i) the intercepts

ii) the coordinates of the vertex

iii) the equation of the axis of symmetry

iv) the domain of the function v) the range of the function

В

2

8. a) Use a graphing calculator to graph each set of quadratic functions.

i) $y = x^2 + 2x$	ii) $y = -x^2 - 2x$
$y = x^2 + 2x + 1$	$y = -x^2 - 2x - 1$
$y = x^2 + 2x + 2$	$y=-x^2-2x-2$

b) How many *x*-intercepts may a parabola have?

 $y = x^2 + 2x$ has 2 x-intercepts; $y = x^2 + 2x + 1$ has 1 x-intercept; and $y = x^2 + 2x + 2$ has no x-intercepts. $y = -x^2 - 2x$ has 2 x-intercepts; $y = -x^2 - 2x - 1$ has 1 x-intercept; and $y = -x^2 - 2x - 2$ has no x-intercepts. So, a parabola may have 0, 1, or 2 x-intercepts.

c) How many *y*-intercepts may a parabola have?

Each of the quadratic functions in part a has 1 *y*-intercept. So, a parabola may have 1 *y*-intercept.

- **9.** Use a graphing calculator to graph each quadratic function below. Determine:
 - i) the intercepts ii) the coordinates of the vertex
 - iii) the equation of the axis of symmetry
 - iv) the domain of the function v) the range of the function

a) $y = 0.5x^2 - 2x + 5$ **b**) $y = -0.75x^2 + 6x - 15$

Once I had graphed a function, I used the CALC feature, where necessary, to determine the intercepts and the coordinates of the vertex. When the intercepts were approximate, I wrote them to the nearest hundredth.

i) <i>x</i> -intercepts: none	i) <i>x</i> -intercepts: none
<i>y</i> -intercept: 5	<i>y</i> -intercept: -15
ii) vertex: (2, 3)	ii) vertex: (4, −3)
iii) axis of symmetry: $x = 2$	iii) axis of symmetry: $x = 4$
iv) domain: $x \in \mathbb{R}$	iv) domain: $x \in \mathbb{R}$
v) range: $y \ge 3$, $y \in \mathbb{R}$	v) range: $y \leq -3$, $y \in \mathbb{R}$

```
c) y = 2x^2 - 3x - 2.875

i) x-intercepts: about -0.66

and about 2.16

y-intercept: -2.875

ii) vertex: (0.75, -4)

iii) axis of symmetry: x = 0.75

iv) domain: x \in \mathbb{R}

v) range: y \ge -4, y \in \mathbb{R}

c) y = -3x^2 + 10.5x - 8.1875

i) x-intercepts: about 1.17

and about 2.33

y-intercept: -8.1875

ii) vertex: (1.75, 1)

iii) axis of symmetry: x = 1.75

iv) domain: x \in \mathbb{R}

v) range: y \ge -4, y \in \mathbb{R}

v) range: y \le 1, y \in \mathbb{R}
```

- **10.** A stone is dropped from a bridge over the Peace River. The height of the stone, *h* metres, above the river, *t* seconds after it was dropped, is modelled by the equation $h = 20 4.9t^2$.
 - a) Graph the quadratic function, then sketch it below.

I input the equation $y = 20 - 4.9x^2$ in my graphing calculator, then graphed the function.

b) When did the stone hit the river?

To the nearest tenth, the positive *t*-intercept is 2.0. So, the stone hit the river approximately 2 s after it was dropped.

c) What is the domain? What does it represent?

The domain is the set of possible *t*-values; that is, all values between and including 0 and the positive *t*-intercept. To the nearest tenth of a second, the domain is: $0 \le t \le 2.0$. The domain represents the time the stone was in the air.

С

- **11.** Consider the quadratic function $y = ax^2 + c$. What must be true about *a* and *c* in each case?
 - a) The function has no *x*-intercepts.

When *a* is positive, the parabola opens up. So, for the function to have no *x*-intercepts, its vertex must be above the *x*-axis; that is c > 0. When *a* is negative, the parabola opens down. So, for the function to have no *x*-intercepts, its vertex must be below the *x*-axis; that is c < 0. **b**) The function has one *x*-intercept.

For the function to have one *x*-intercept, the vertex of the parabola must be on the *x*-axis. So, c = 0

c) The function has two *x*-intercepts.

When *a* is positive, the parabola opens up. So, for the function to have two *x*-intercepts, its vertex must lie below the *x*-axis; that is c < 0. When *a* is negative, the parabola opens down. So, for the function to have two *x*-intercepts, its vertex must lie above the *x*-axis; that is c > 0.

- **12.** In *Example* 3 on page 255, the parabola has one positive *t*-intercept which is approximately 12.3. The graph has also a negative *t*-intercept.
 - a) Determine this intercept.

Using the CALC feature on my graphing calculator, the negative *t*-intercept, to the nearest hundredth, is -0.03.

b) How could you interpret this intercept in terms of the situation modelled by the equation?

The object is fired from a location just above the ground. The numerical value of the negative *t*-intercept could represent the additional time that it would take the object to reach its maximum height if it were fired from the ground.