Lesson 4.2 Math Lab: Assess Your Understanding, pages 265-267

1. Use the graph of $y=x^{2}-4 x-12$ to determine the roots of $x^{2}-4 x-12=0$. Explain your strategy.

The roots of the equation are the x-intercepts of the graph. These are: $x=-2$ and $x=6$

2. Use graphing technology to solve each equation. Verify the solution.
a) $-4 x^{2}-13 x-12=0$
b) $-2 x^{2}-9 x+35=0$
a) For $-4 x^{2}-13 x-12=0$, graph $y=-4 x^{2}-13 x-12$. The graph does not intersect the x-axis, so the equation $-4 x^{2}-13 x-12=0$ does not have any real roots.
b) For $-2 x^{2}-9 x+35=0$, graph $y=-2 x^{2}-9 x+35$. On a graphing calculator, press: 2nd TRACE 2]. Move the cursor to the left of the 1st x-intercept, then press ENTER; move the cursor to the right of the intercept and press ENTER ENTER. The screen displays $X=-7$. Repeat the process for the 2 nd x-intercept to get $X=2.5$. The roots are $x=-7$ and $x=2.5$.
3. Use graphing technology to approximate the solution of each equation. Write the roots to 1 decimal place.
a) $x^{2}-3 x+1=0$
b) $-x^{2}+7 x-1=0$
a) For $x^{2}-3 x+1=0$, graph $y=x^{2}-3 x+1$. Use the strategy of question 2 b to display $X=.38196601$ and $X=2.618034$. The roots are approximately $x=0.4$ and $x=2.6$.
b) For $-x^{2}+7 x-1=0$, graph $y=-x^{2}+7 x-1$. Use the strategy of question 2 b to display $X=.14589803$ and $X=6.854102$. The roots are approximately $x=0.1$ and $x=6.9$.
c) $2 x^{2}+6 x-3=0$
d) $-3 x^{2}-7 x+1=0$
c) For $2 x^{2}+6 x-3=0$, graph $y=2 x^{2}+6 x-3$. Use the strategy of question 2 b to display $X=-3.436492$ and $X=.43649167$. The roots are approximately $x=-3.4$ and $x=0.4$.
d) For $-3 x^{2}-7 x+1=0$, graph $y=-3 x^{2}-7 x+1$. Use the strategy of question 2 b to display $X=-2.468375$ and $X=.13504161$. The roots are approximately $x=-2.5$ and $x=0.1$.
4. The graph of a quadratic function is shown. What can you say about the discriminant of the corresponding quadratic equation? Justify your response.

The graph intersects the x-axis in two points,
 so the related quadratic equation has 2 real roots. This means that the discriminant is greater than 0 . In the quadratic formula, $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, there are two values for x because the square root of the discriminant is added to and subtracted from -b.
5. a) Sketch graphs to show why a quadratic equation may have 1,2 , or no real roots. Explain why a quadratic equation cannot have 3 or more roots.

This graph touches the x-axis at 1 point, so the related quadratic equation has 1 real root.

This graph intersects the x-axis at 2 points, so the related quadratic equation has 2 real roots.

This graph does not intersect the x-axis, so the related quadratic equation has no real roots.

A quadratic equation cannot have 3 or more roots because its related quadratic function intersects the x-axis in no more than 2 points.
b) How can the discriminant be used to determine the number of roots of a quadratic equation?

When the discriminant is 0 , there is exactly 1 real root.
When the discriminant is positive, there are 2 real roots.
When the discriminant is negative, there are no real roots.

