Lesson 4.3 Math Lab: Assess Your Understanding, pages 269-271

1. Complete this table for the graph of each function.

Function	Direction of opening	Vertex	Axis of symmetry	Congruent to $\boldsymbol{y}=\boldsymbol{x}^{2} ?$
$y=x^{2}$	up	$(0,0)$	$x=0$	yes
$y=(x-7)^{2}$	up	$(7,0)$	$x=7$	yes
$y=(x+8)^{2}$	up	$(-8,0)$	$x=-8$	yes
$y=x^{2}+7$	up	$(0,7)$	$x=0$	yes
$y=x^{2}-8$	up	$(0,-8)$	$x=0$	yes
$y=7 x^{2}$	up	$(0,0)$	$x=0$	no
$y=-7 x^{2}$	down	$(0,0)$	$x=0$	no

2. On grid paper, graph $y=x^{2}$. Graph each quadratic function without using a table of values or a graphing calculator.
Explain your strategy each time.
a) $y=x^{2}+5 \quad y=x^{2}-4$
\& I translate the graph of $y=x^{2}$ 5 units up to get the graph of $y=x^{2}+5$. I translate the graph of $y=x^{2} 4$ units down to get the graph of $y=x^{2}-4$.

b) $y=(x+3)^{2} \quad y=(x-5)^{2}$

I translate the graph of $y=x^{2} 3$ units left to get the graph of $y=(x+3)^{2}$. I translate the graph of $y=x^{2}$ 5 units right to get the graph of $y=(x-5)^{2}$.

c) $y=2 x^{2} \quad y=\frac{1}{2} x^{2}$

8 I double the y-coordinate of each point on the graph of $y=x^{2}$ to get the graph of $y=2 x^{2}$. I halve the y-coordinate of each point on the graph of $y=x^{2}$ to get the graph of $y=\frac{1}{2} x^{2}$.

d) $y=-4 x^{2} \quad y=-\frac{1}{4} x^{2}$

I multiply the y-coordinate of each point on the graph of $y=x^{2}$ by 4, then reflect the point in the x-axis to get the graph of $y=-4 x^{2}$. I divide the y-coordinate of each point on the graph of $y=x^{2}$ by 4 , then reflect the point in the x-axis to get the graph of $y=-\frac{1}{4} x^{2}$.

3. The graph of $y=x^{2}$ is translated as described below. Without graphing, write the equation of the graph in its new position.
a) a translation of 30 units left
b) a translation of 250 units up
$y=(x+30)^{2}$

$$
y=x^{2}+250
$$

c) a translation of 21 units right
d) a translation of 83 units down
$y=(x-21)^{2}$
$y=x^{2}-83$
4. What happens to the axis of symmetry of the parabola in each case?
a) The graph of $y=x^{2}$ is translated 5 units left.

The axis of symmetry moves 5 units left.
b) The graph of $y=x^{2}$ is translated 5 units down.

The axis of symmetry does not move.

