## Lesson 4.5 Exercises, pages 295-299

A
Students should verify that two forms of an equation represent the same quadratic function, where necessary.
3. Determine the number that would be added to each binomial to get a perfect square trinomial. Add the number, then factor the trinomial.
a) $x^{2}+12 x$
b) $x^{2}-8 x$
$\left(\frac{12}{2}\right)^{2}=36$
$x^{2}+12 x+36=(x+6)^{2}$
$x^{2}-8 x+16=(x-4)^{2}$
c) $x^{2}+7 x$
d) $x^{2}+\frac{3}{2} x$

$$
\left(\frac{7}{2}\right)^{2}=\frac{49}{4}
$$

$$
x^{2}+7 x+\frac{49}{4}=\left(x+\frac{7}{2}\right)^{2}
$$

$$
\begin{aligned}
\left(\frac{3}{\frac{2}{2}}\right)^{2} & =\left(\frac{3}{4}\right)^{2}, \text { or } \frac{9}{16} \\
x^{2}+\frac{3}{2} x+\frac{9}{16} & =\left(x+\frac{3}{4}\right)^{2}
\end{aligned}
$$

4. Do the equations in each pair represent the same quadratic function?
a) $y=x^{2}+4 x-1 ; y=(x+2)^{2}-5$

Expand: $y=(x+2)^{2}-5$

$$
\begin{aligned}
& y=x^{2}+4 x+4-5 \\
& y=x^{2}+4 x-1
\end{aligned}
$$

This matches the other equation. So, the equations represent the same quadratic function.
b) $y=-2 x^{2}-6 x+1 ; y=-2(x+3)^{2}+1$

$$
\text { Expand: } \begin{aligned}
y & =-2(x+3)^{2}+1 \\
y & =-2\left(x^{2}+6 x+9\right)+1 \\
y & =-2 x^{2}-12 x-18+1 \\
y & =-2 x^{2}-12 x-17
\end{aligned}
$$

This does not match the other equation. So, the equations do not represent the same quadratic function.

B
5. Write each equation in standard form. Verify algebraically that the two forms of the equation represent the same quadratic function.
a) $y=x^{2}+6 x+1$
b) $y=x^{2}-2 x-4$

$$
\begin{array}{rlrl}
\text { Add and subtract: }\left(\frac{6}{2}\right)^{2}=9 & & \text { Add and subtract: }\left(\frac{-2}{2}\right)^{2}=1 \\
y & =\left(x^{2}+6 x\right)+1 & & y=\left(x^{2}-2 x\right)-4 \\
& =\left(x^{2}+6 x+9-9\right)+1 & & =\left(x^{2}-2 x+1-1\right)-4 \\
& =\left(x^{2}+6 x+9\right)-9+1 & & =\left(x^{2}-2 x+1\right)-1-4 \\
& =(x+3)^{2}-8 & & =(x-1)^{2}-5
\end{array}
$$

6. Write each equation in standard form. Use a graphing calculator to verify that the two forms of the equation represent the same quadratic function.
a) $y=2 x^{2}+8 x-4$
b) $y=3 x^{2}-12 x-1$
$y=2\left(x^{2}+4 x\right)-4$
$y=3\left(x^{2}-4 x\right)-1$
Add and subtract: $\left(\frac{4}{2}\right)^{2}=4$
Add and subtract: $\left(\frac{-4}{2}\right)^{2}=4$

$$
y=2\left(x^{2}+4 x+4-4\right)-4
$$

$$
y=3\left(x^{2}-4 x+4-4\right)-1
$$

$$
=2\left(x^{2}+4 x+4\right)-2(4)-4=3\left(x^{2}-4 x+4\right)-3(4)-1
$$

$$
=2(x+2)^{2}-12 \quad=3(x-2)^{2}-13
$$

7. Write each equation in standard form.
a) $y=\frac{3}{4} x^{2}-6 x+2$

$$
y=\frac{3}{4}\left(x^{2}-8 x\right)+2
$$

Add and subtract: $\left(\frac{-8}{2}\right)^{2}=16$

$$
\begin{aligned}
y & =\frac{3}{4}\left(x^{2}-8 x+16-16\right)+2 \\
& =\frac{3}{4}\left(x^{2}-8 x+16\right)-\frac{3}{4}(16)+2 \\
& =0.75(x-4)^{2}-12+2 \\
& =0.75(x-4)^{2}-10
\end{aligned}
$$

b) $y=-\frac{1}{2} x^{2}+5 x+1$

$$
y=-\frac{1}{2}\left(x^{2}-10 x\right)+1
$$

Add and subtract: $\left(\frac{-10}{2}\right)^{2}=25$

$$
\begin{aligned}
y & =-\frac{1}{2}\left(x^{2}-10 x+25-25\right)+1 \\
& =-\frac{1}{2}\left(x^{2}-10 x+25\right)-\frac{1}{2}(-25)+1 \\
& =-0.5(x-5)^{2}+12.5+1 \\
& =-0.5(x-5)^{2}+13.5
\end{aligned}
$$

8. Write each equation in standard form, then identify the given characteristic of the graph of the function.
a) $y=2 x^{2}+5 x-3$; the coordinates of the vertex

$$
y=2\left(x^{2}+\frac{5}{2} x\right)-3
$$

Add and subtract: $\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{4}\right)^{2}$, or $\frac{25}{16}$

$$
\begin{aligned}
y & =2\left(x^{2}+\frac{5}{2} x+\frac{25}{16}-\frac{25}{16}\right)-3 \\
& =2\left(x^{2}+\frac{5}{2} x+\frac{25}{16}\right)-2\left(\frac{25}{16}\right)-3 \\
& =2\left(x+\frac{5}{4}\right)^{2}-\frac{25}{8}-3 \\
& =2(x+1.25)^{2}-6.125
\end{aligned}
$$

Compare this with $y=a(x-p)^{2}+q$.
The vertex of the parabola has coordinates ( $-1.25,-6.125$ ).
b) $y=-4 x^{2}+11 x+12$; the $y$-coordinate of the vertex

$$
y=-4\left(x^{2}-\frac{11}{4} x\right)+12
$$

Add and subtract: $\left(-\frac{11}{4}\right)^{2}=\left(-\frac{11}{8}\right)^{2}$, or $\frac{121}{64}$

$$
\begin{aligned}
y & =-4\left(x^{2}-\frac{11}{4} x+\frac{121}{64}-\frac{121}{64}\right)+12 \\
& =-4\left(x^{2}-\frac{11}{4} x+\frac{121}{64}\right)-4\left(-\frac{121}{64}\right)+12 \\
& =-4\left(x-\frac{11}{8}\right)^{2}+\frac{121}{16}+12 \\
& =-4\left(x-\frac{11}{8}\right)^{2}+\frac{313}{16}
\end{aligned}
$$

Compare this with $y=a(x-p)^{2}+q$.
The vertex of the parabola has coordinates $\left(\frac{11}{8}, \frac{313}{16}\right)$.
So, the $y$-coordinate of the vertex is $\frac{313}{16}$.
9. Compare the two solutions for completing the square. Identify the error, then explain each step for the correct solution.

## Solution A

$y=-\frac{2}{3} x^{2}-4 x-10$
Step $1 y=-\frac{2}{3}\left(x^{2}+6 x\right)-10$
Step $2 y=-\frac{2}{3}\left(x^{2}+6 x+9-9\right)-10$
Step $3 y=-\frac{2}{3}\left(x^{2}+6 x+9\right)+6-10$
Step $4 y=-\frac{2}{3}(x+3)^{2}-4$

## Solution B

$$
\begin{aligned}
& y=-\frac{2}{3} x^{2}-4 x-10 \\
& y=-\frac{2}{3}\left(x^{2}+6 x\right)-10 \\
& y=-\frac{2}{3}\left(x^{2}+6 x+9-9\right)-10 \\
& y=-\frac{2}{3}\left(x^{2}+6 x+9\right)-9-10 \\
& y=-\frac{2}{3}(x+3)^{2}-19
\end{aligned}
$$

Solution A is correct.
Solution B has an error in the 4th line. When -9 was taken out of the brackets, it should have been multiplied by $-\frac{2}{3}$.
Step 1: Remove $-\frac{2}{3}$ as a common factor from the first 2 terms.
Step 2: Add and subtract the square of one-half of 6 , the coefficient of $x$.
Step 3: Take -9 outside of the brackets by multiplying it by $-\frac{2}{3}$.
Step 4: Write the terms in the brackets as a perfect square. Simplify the terms outside of the brackets.
10. Identify the errors in this solution of completing the square.

Write the correct solution.
$y=-3 x^{2}-6 x+4$
$y=-3\left(x^{2}-2 x\right)+4$
$y=-3\left(x^{2}-2 x+1\right)+4+3$
$y=-3(x-1)^{2}+7$
There is an error in line 2 of the solution: when a factor of -3 was removed from $-6 x$, the result should have been $2 x$, not $-2 x$.
A correct solution is:
$y=-3 x^{2}-6 x+4$
$y=-3\left(x^{2}+2 x\right)+4$
$y=-3\left(x^{2}+2 x+1-1\right)+4$
$y=-3\left(x^{2}+2 x+1\right)-3(-1)+4$
$y=-3(x+1)^{2}+7$

C
11. What are the coordinates of the vertex of the graph of $y=a x^{2}+b x+c$ ?

Complete the square.
$y=a x^{2}+b x+c$
$y=a\left(x^{2}+\frac{b}{a} x\right)+c \quad$ Add and subtract: $\left(\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}$
$y=a\left(x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}-\frac{b^{2}}{4 a^{2}}\right)+c$
$y=a\left(x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}\right)-a\left(\frac{b^{2}}{4 a^{2}}\right)+c$
$y=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c$
$y=a\left(x+\frac{b}{2 a}\right)^{2}+\frac{-b^{2}+4 a c}{4 a}$
Compare this with $y=a(x-p)^{2}+q$.
The vertex of the parabola has coordinates $\left(-\frac{b}{2 a^{a}} \frac{-b^{2}+4 a c}{4 a}\right)$.

