## Lesson 4.7 Exercises, pages 323-326

## A

3. Identify which quadratic functions have a maximum value and which have a minimum value. What is that value?
a) $y=-35(x+100)^{2}-1200$

Compare each equation to $y=a(x-p)^{2}+q$.
$a$ is negative, so the function has a maximum value.
The coordinates of the vertex are: $(-100,-1200)$
So, the maximum value is -1200 .
b) $R(x)=\frac{1}{2}(x-37)^{2}+37$
$a$ is positive, so the function has a minimum value.
The coordinates of the vertex are: $(37,37)$
So, the minimum value is 37 .

B
4. Two numbers have a difference of 6 and their product is a minimum. Determine the numbers.

Let one number be represented by $x$. Then the other number is: $6+x$
The product, $P$, of the numbers is: $x(6+x)$
An equation is: $P=x(6+x)$, or $p=x^{2}+6 x$
The coefficient of $x^{2}$ is positive, so the graph has a minimum value.
From the equation $P=x(6+x)$, the $x$-intercepts are: $0,-6$
So, the $x$-coordinate of the vertex is -3 . So, one number is -3 .
The other number is: $6-3=3$
The numbers are -3 and 3 .
5. The sum of the length and width of a rectangle is 20 cm . Determine the dimensions that produce the maximum area.

Let the length of the rectangle be / centimetres. Then the width is:
( $20-I$ ) centimetres
So, the area, $A$ square centimetres, is given by the equation:
$A=I(20-I)$, or $A=-I^{2}+20 I$
The coefficient of $l^{2}$ is negative, so the graph has a maximum value.
From the equation $A=I(20-I)$, the $I$-intercepts are: 0,20
So, the $l$-coordinate of the vertex is 10 . So, the length is 10 cm .
The width is: $20-10=10$
The dimensions that produce the maximum area are 10 cm by 10 cm .
6. Two numbers have a difference of 18 . The sum of their squares is a minimum. Determine the numbers.

Let one number be represented by $x$. Then the other number is: $18+x$
The sum of the squares, $S$, of the numbers is: $x^{2}+(18+x)^{2}$
An equation is: $S=x^{2}+(18+x)^{2}$

$$
\begin{aligned}
& =x^{2}+324+36 x+x^{2} \\
& =2 x^{2}+36 x+324
\end{aligned}
$$

The coefficient of $x^{2}$ is positive, so the graph has a minimum value.
$S=2\left(x^{2}+18 x\right)+324$
$S=2\left(x^{2}+18 x+81-81\right)+324$
$S=2\left(x^{2}+18 x+81\right)-162+324$
$S=2(x+9)^{2}+162$
The coordinates of the vertex are: $(-9,162)$
The $x$-coordinate of the vertex is -9 . So, one number is -9 .
The other number is: $18-9=9$.
7. A rectangular play area is to be bounded by 120 m of fencing. Determine the maximum area and the dimensions of this rectangle.

Let the length of the rectangle be I metres and its width be $w$ metres.
The area, $A$ square metres, is given by the equation: $A=/ w$
The perimeter of the rectangle is 120 m . So, $120=2 l+2 w$

$$
\begin{aligned}
120-2 l & =2 w \\
w & =60-l
\end{aligned}
$$

So, $A=I(60-I)$
$A=-l^{2}+60 l$
The coefficient of $l^{2}$ is negative, so the graph has a maximum value.
From the equation, the $l$-intercepts are: 0,60
The $I$-coordinate of the vertex is 30 . $\mathrm{So}, I=30$
Then, $A=30(60-30)$

$$
=900
$$

The maximum area is $900 \mathrm{~m}^{2}$.
$w=60-30$
$=30$
The dimensions of the rectangle are 30 m by 30 m .
8. A rectangular lot is bordered on one side by a building and the other 3 sides by 800 m of fencing. Determine the area of the largest lot possible.

Let the length of the rectangle be I metres and its width be $w$ metres.
The area, $A$ square metres, is given by the equation: $A=I w$
The perimeter of 3 sides of the rectangle is 800 m .
So, $\quad 800=2 l+w$
$800-21=w$
So, $A=I(800-2 I)$

$$
A=-2 l^{2}+800 l
$$

The coefficient of $l^{2}$ is negative, so the graph has a maximum value.
From the equation, the $l$-intercepts are: 0,400
The $I$-coordinate of the vertex is 200 . So, $I=200$
Then, $A=200(800-2 \cdot 200)$
$A=80000$
The maximum area is $80000 \mathrm{~m}^{2}$.
9. A rectangular area is divided into 2 rectangles with 450 m of fencing used for the perimeter and the divider. What are the dimensions of the total maximum area?


Let the width of each rectangle be $w$ metres. Let the length of the rectangle made up of the two smaller rectangles be / metres.
The area, $A$ square metres, is given by the equation: $A=I \mathrm{w}$
The perimeter of the rectangular areas is 450 m .
So, $\quad 450=2 l+3 w$
$450-2 l=3 w$
$w=\frac{1}{3}(450-21)$
So, $A=\frac{1}{3}(450-2 /)$
$A=-\frac{2}{3} I^{2}+\frac{450}{3} I$
The coefficient of $l^{2}$ is negative, so the graph has a maximum value.
From the equation, the $l$-intercepts are: 0,225
The $I$-coordinate of the vertex is 112.5 . So, $I=112.5$
Then, $A=\frac{1}{3}(112.5)(450-2 \cdot 112.5)$

$$
A=8437.5
$$

The maximum area is $8437.5 \mathrm{~m}^{2}$.
$w=\frac{1}{3}(450-2(112.5))$
$w=75$
The dimensions of the maximum area are 75 m by 112.5 m .
10. The Nuts and Bolts Company sells one type of bolt for 954 . At this price, the company sells approximately 10000 bolts per month. Market research indicates that for every $15 \$$ increase in price, the company will sell 500 fewer bolts. Determine the price of a bolt that will maximize the revenue.

Let $x$ represent the number of $\$ 0.15$ increases in the price of a bolt. When the cost is $\$ 0.95,10000$ are sold for a revenue of: $\$ 0.95(10000)=\$ 9500$
When the cost is $\$(0.95+0.15 x),(10000-500 x)$ are sold for a revenue of $\$(0.95+0.15 x)(10000-500 x)$.
Let the revenue be $R$ dollars.
An equation is: $R=(0.95+0.15 x)(10000-500 x)$
Use a graphing calculator to graph the equation.
From the graph, the maximum revenue is about $\$ 13002.08$ when the number of $\$ 0.15$ increases is 6.83 .
The number of increases is a whole number, so round 6.83 to 7 .
Seven increases of $\$ 0.15$ in the cost of a bolt mean that the bolt will now cost: 7(\$0.15) $+\$ 0.95=\$ 2.00$
11. This problem was solved in Example 2, page 321.

A student parking pass costs $\$ 20$. At this price, 150 students will purchase passes. For every $\$ 5$ increase in price, 20 fewer students will purchase passes. What is the price of a parking pass that will maximize the revenue?
a) Solve the problem by letting $x$ dollars represent the increase in price.

Let $x$ dollars represent the increase in the price of a parking pass.
When the cost is $\$ 20,150$ are sold for a revenue of: $\$ 3000$
When the cost is $\$ 20+x_{,}\left(150-20\left(\frac{x}{5}\right)\right)$, or $(150-4 x)$ are sold for
a revenue of $\$(20+x)(150-4 x)$.
Let the revenue be $R$ dollars.
An equation is: $R=(20+x)(150-4 x)$
Use a graphing calculator to graph the equation.
From the graph, the maximum revenue is about $\$ 3306.25$ when the price increase is $\$ 8.75$.
The cost of a parking pass will now be $\$ 8.75+\$ 20.00=\$ 28.75$
Since $\$ 28.75$ is not a multiple of $\$ 5$, round up.
The parking pass will now cost $\$ 30.00$.
b) Solve the problem by letting $x$ dollars represent the price of a parking pass.

Let $x$ dollars represent the new cost of a parking pass.
When the cost is $\$ 20,150$ are sold for a revenue of: $\$ 3000$
When the cost is $\$ x_{x}\left(150-20\left(\frac{x-20}{5}\right)\right)$, or $(230-4 x)$ are sold
for a revenue of $\$ x(230-4 x)$.
Let the revenue be $R$ dollars.
An equation is: $R=x(230-4 x)$
Use a graphing calculator to graph the equation.
From the graph, the maximum revenue is about $\$ 3306.25$ when the price of the parking pass is $\$ 28.75$.
Since $\$ 28.75$ is not a multiple of $\$ 5$, round up.
The parking pass will now cost $\$ 30.00$.
c) Which of the 3 strategies do you think is most efficient? Justify your answer.

I think the method shown in Example 2 is most efficient because the solution does not involve fractions.

