Checkpoint 1: Assess Your Understanding, pages 272-275
4.1

1. Multiple Choice Which equations, graph, and table of values represent quadratic functions?
I. $y=2(x-3)+1$
II. $y=2 x^{2}-4 x+1$
III.

\boldsymbol{x}	\boldsymbol{y}
0	13
1	8
2	5
3	4

IV.

A. IV only
B. II only
C. II, III, and IV
D. all parts
2. Use a table of values to graph each quadratic function.

From each graph, identify the characteristic indicated.
a) $y=x^{2}-4 x+1$; the coordinates of the vertex

x	-2	-1	0	1	2	3	4
\boldsymbol{y}	13	6	1	-2	-3	-2	1

From the graph, the coordinates of the vertex are $(2,-3)$.
b) $y=-3 x^{2}+6 x$; the x-intercepts

x	-2	-1	0	1	2	3	4
\boldsymbol{y}	-24	-9	0	3	0	-9	-24

From the graph, the x-intercepts are 0 and 2.

3. Stephanie jumps to head a soccer ball. The path of the ball is modelled by the equation $h=-0.2 d^{2}+0.8 d+1.8$, where h metres is the height of the ball after it has travelled d metres horizontally. Use a graphing calculator or graphing software.
a) Graph the quadratic function, then sketch it below.

I graphed the function $y=-0.2 x^{2}+0.8 x+1.8$.

b) Identify and explain the significance of:
i) the horizontal and vertical intercepts
ii) the coordinates of the vertex
iii) the domain
iv) the range
i) To the nearest hundredth, the positive d-intercept is 5.61. The ball travels a horizontal distance of about 5.61 m before it hits the ground. The h-intercept is 1.8 . The ball is at a height of 1.8 m when Stephanie heads it. There is a negative intercept, but it makes no sense in this situation.
ii) The coordinates of the vertex are $(2,2.6)$. The greatest height that the ball reaches is 2.6 m after travelling a horizontal distance of 2 m .
iii) The domain is the set of possible d-values. To the nearest hundredth of a second, the domain is: $0 \leq d \leq 5.61, d \in \mathbb{R}$. The ball travels a horizontal distance of about 5.61 m .
iv) The range is the set of possible h-values. The range is:
$0 \leq h \leq 2.6, h \in \mathbb{R}$. The ball has a maximum height of 2.6 m .
4. Use a graphing calculator to graph each quadratic function. Identify the characteristic indicated.
a) $y=2.5 x^{2}+5 x-20$; the x-intercepts
I used the CALC feature to determine the x-intercepts are -4 and 2 .
b) $y=-1.5 x^{2}+4.5 x+6$; the y-intercept

I used the CALC feature to determine the y-intercept is 6 .

4.2

5. Multiple Choice Which quadratic function corresponds to a quadratic equation with exactly one root?
A.

B.

C.

(D.)

6. Use graphing technology to determine or approximate the roots of each equation.
a) $2 x-x^{2}+5=0$
b) $-4 x^{2}-49=-28 x$
Graph $y=-x^{2}+2 x+5$.
Use the CALC feature to display $X=-1.44949$ and $X=3.4494897$. The roots Graph $y=-4 x^{2}+28 x-49$. The graph touches the x-axis at 1 point. Use the CALC feature to display $X=3.5$. The root is $x=3.5$.
are approximately
$x=-1.4$ and $x=3.4$.

4.3

7. Match each equation to the description of how its graph could be determined from the graph of $y=x^{2}$.
i) translate 2 units up
iii) translate 2 units down
a) $y=(x-2)^{2}$
b) $y=x^{2}-2$
Compare the equations
$y=(x-2)^{2}$ and
$y=(x-p)^{2}$. Since p is
+2 , the graph moves
2 units to the right.
This matches part iv. This matches part iii.
ii) translate 2 units left
iv) translate 2 units right

Compare the equations $y=x^{2}-2$ and $y=x^{2}+q$. Since q is -2 , the graph moves 2 units down.
c) $y=(x+2)^{2}$

Compare the equations
$y=(x+2)^{2}$ and
$y=(x-p)^{2}$. Since p is
-2 , the graph moves
2 units to the left.
This matches part ii.
d) $y=x^{2}+2$

Compare the equations $y=x^{2}+2$ and $y=x^{2}+q$. Since q is +2 , the graph moves 2 units up.
This matches part i .

