Checkpoint 1: Assess Your Understanding, pages 272–275

4.1

1. Multiple Choice Which equations, graph, and table of values represent quadratic functions?

A. IV only B. II only C. II, III, and IV D. all parts

- **2.** Use a table of values to graph each quadratic function. From each graph, identify the characteristic indicated.
 - **a**) $y = x^2 4x + 1$; the coordinates of the vertex

x	-2	-1	0	1	2	3	4
У	13	6	1	-2	-3	-2	1

From the graph, the coordinates of the vertex are (2, -3).

b) $y = -3x^2 + 6x$; the *x*-intercepts

x	-2	-1	0	1	2	3	4
У	-24	-9	0	3	0	-9	-24

From the graph, the *x*-intercepts are 0 and 2.

- **3.** Stephanie jumps to head a soccer ball. The path of the ball is modelled by the equation $h = -0.2d^2 + 0.8d + 1.8$, where *h* metres is the height of the ball after it has travelled *d* metres horizontally. Use a graphing calculator or graphing software.
 - a) Graph the quadratic function, then sketch it below.

I graphed the function $y = -0.2x^2 + 0.8x + 1.8$.

- **b**) Identify and explain the significance of:
 - i) the horizontal and vertical intercepts
 - ii) the coordinates of the vertex
 - iii) the domain iv) the range
 - i) To the nearest hundredth, the positive *d*-intercept is 5.61. The ball travels a horizontal distance of about 5.61 m before it hits the ground. The *h*-intercept is 1.8. The ball is at a height of 1.8 m when Stephanie heads it. There is a negative intercept, but it makes no sense in this situation.
 - ii) The coordinates of the vertex are (2, 2.6). The greatest height that the ball reaches is 2.6 m after travelling a horizontal distance of 2 m.
 - iii) The domain is the set of possible *d*-values. To the nearest hundredth of a second, the domain is: $0 \le d \le 5.61$, $d \in \mathbb{R}$. The ball travels a horizontal distance of about 5.61 m.
 - iv) The range is the set of possible *h*-values. The range is: $0 \le h \le 2.6, h \in \mathbb{R}$. The ball has a maximum height of 2.6 m.
- **4.** Use a graphing calculator to graph each quadratic function. Identify the characteristic indicated.

a) $y = 2.5x^2 + 5x - 20$; the *x*-intercepts

I used the CALC feature to determine the *x*-intercepts are -4 and 2.

b) $y = -1.5x^2 + 4.5x + 6$; the *y*-intercept

I used the CALC feature to determine the *y*-intercept is 6.

4.2

5. Multiple Choice Which quadratic function corresponds to a quadratic equation with exactly one root?

6. Use graphing technology to determine or approximate the roots of each equation.

a)
$$2x - x^2 + 5 = 0$$

Graph $y = -x^2 + 2x + 5$.
Use the CALC feature to
display $X = -1.44949$ and
 $X = 3.4494897$. The roots
are approximately
 $x = -1.4$ and $x = 3.4$.
b) $-4x^2 - 49 = -28x$
Graph $y = -4x^2 + 28x - 49$. The
graph touches the x-axis at 1 point.
Use the CALC feature to display
 $X = 3.5$. The root is $x = 3.5$.

4.3

7. Match each equation to the description of how its graph could be determined from the graph of $y = x^2$.

iii) translate 2 units down

b) $y = x^2 - 2$

Compare the equations $y = (x - 2)^2$ and $y = (x - p)^2$. Since p is +2, the graph moves 2 units to the right. This matches part iv. Compare the equations $y = x^2 - 2$ and $y = x^2 + q$. Since q is -2, the graph moves 2 units down. This matches part iii.

iv) translate 2 units right

c) $y = (x + 2)^2$

a) $y = (x - 2)^2$

Compare the equations $y = (x + 2)^2$ and $y = (x - p)^2$. Since p is -2, the graph moves 2 units to the left. This matches part ii.

d) $y = x^2 + 2$

Compare the equations $y = x^2 + 2$ and $y = x^2 + q$. Since q is +2, the graph moves 2 units up. This matches part i.