REVIEW, pages 330-335

4.1

1. a) Use a table of values to graph $y=2 x^{2}+6 x-8$.

\boldsymbol{x}	-5	-4	-3	-2	-1	0	1	2
\boldsymbol{y}	12	0	-8	-12	-12	-8	0	12

b) Determine:

i) the intercepts
ii) the coordinates of the vertex
iii) the equation of the axis of symmetry
iv) the domain of the function
\mathbf{v}) the range of the function

Give the values to the nearest tenth where necessary.
i) x-intercepts: $-4,1$
y-intercept: -8
ii) From the graph, the axis of symmetry
is midway between $x=-1$ and $x=-2$.
So, the equation of the axis of
symmetry is $x=-1.5$.
When $x=-1.5, y=2(-1.5)^{2}+6(-1.5)-8$, or -12.5
The coordinates of the vertex are: $(-1.5,-12.5)$
iii) axis of symmetry: $x=-1.5$
iv) domain: $x \in \mathbb{R}$
v) range: $y \geq-12.5, y \in \mathbb{R}$
2. Which of these tables of values represents a quadratic function? Justify your response.

a) | \boldsymbol{x} | 0 | 1 | 2 | 3 |
| ---: | ---: | ---: | ---: | ---: |
| \boldsymbol{y} | 3 | -3 | -13 | -27 |

The x-coordinates increase by 1 each time.
First differences:

$$
\begin{aligned}
-3-3 & =-6 \\
-13-(-3) & =-10 \\
-27-(-13) & =-14
\end{aligned}
$$

The first differences decrease by 4 each time. So, the function is quadratic.

b) | x | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| y | 1 | 3 | 5 | 7 |

The x-coordinates increase by 1 each time.
First differences:
$3-1=2$
$5-3=2$
$7-5=2$
The first differences are constant. So, the function is linear.

4.2

3. Use graphing technology to approximate the solution of the equation below. Write the roots to 3 decimal places.
$3 x^{2}+6 x-70=0$
Graph $y=3 x^{2}+6 x-70$. Use the CALC feature to display
$X=-5.932883$ and $X=3.9328829$. The roots are approximately $x=-5.933$ and $x=3.933$.

4.3

4. For each pair of quadratic functions, describe how their graphs are related.
a) $y=(x-3)^{2} ; y=(x+2)^{2}$

Compare the equations with $y=(x-p)^{2}$.
$y=(x-3)^{2}$: Its graph is the graph of $y=x^{2}$ translated 3 units to the right.
$y=(x+2)^{2}$: Its graph is the graph of $y=x^{2}$ translated 2 units to the left.
So, the graph of $y=(x-3)^{2}$ is translated 5 units left to get the graph of $y=(x+2)^{2}$.
b) $y=x^{2}+5 ; y=x^{2}-1$

Compare the equations with $y=x^{2}+q$.
$y=x^{2}+5$: Its graph is the graph of $y=x^{2}$ translated 5 units up.
$y=x^{2}-1$: Its graph is the graph of $y=x^{2}$ translated 1 unit down. So, the graph of $y=x^{2}+5$ is translated 6 units down to get the graph of $y=x^{2}-1$.
c) $y=-\frac{1}{2} x^{2} ; y=\frac{1}{2} x^{2}$

Compare the equations with $y=a x^{2}$.
$y=-\frac{1}{2} x^{2}$: Its graph is the graph of $y=x^{2}$ compressed by a
vertical factor of $\frac{1}{2}$, then reflected in the x-axis.
$y=\frac{1}{2} x^{2}$: Its graph is the graph of $y=x^{2}$ compressed by a vertical
factor of $\frac{1}{2}$.
So, the graph of $y=-\frac{1}{2} x^{2}$ is reflected in the x-axis to get the graph of $y=\frac{1}{2} x^{2}$.

4.4

5. For this quadratic function: $y=\frac{1}{2}(x-4)^{2}-2$
a) Identify the coordinates of the vertex, the domain, the range, the direction of opening, the equation of the axis of symmetry, and the intercepts.
a is positive, so the graph opens up.
$p=4$ and $q=-2$, so the coordinates of the vertex are: $(4,-2)$
The equation of the axis of symmetry is $x=p$; that is, $x=4$.
To determine the y-intercept, substitute $x=0$:
$y=\frac{1}{2}(0-4)^{2}-2$
$y=6$
The y-intercept is 6 .
To determine the x-intercepts, substitute $y=0$:
$0=\frac{1}{2}(x-4)^{2}-2$
$0=\frac{x^{2}}{2}-4 x+6$
$0=x^{2}-8 x+12$
$0=(x-6)(x-2)$
$x=6$ or $x=2$
The x-intercepts are 2 and 6 .
The domain is: $x \in \mathbb{R}$
The graph opens up, so the vertex is a minimum point
with y-coordinate -2 . The range is: $y \geq-2, y \in \mathbb{R}$
b) Sketch a graph.

The graph is congruent to the graph of $y=\frac{1}{2} x^{2}$.
On a grid, mark a point at the vertex $(4,-2)$. Use the step pattern.
Multiply each vertical step by $\frac{1}{2}$.

6. Determine an equation of the quadratic function for each set of data given.
a) The coordinates of the vertex are $\mathrm{V}(4,12)$ and the graph passes through $\mathrm{A}(7,6)$.

An equation has the form $y=a(x-p)^{2}+q$.
The vertex is at $V(4,12)$, so $p=4$ and $q=12$.
The equation becomes $y=a(x-4)^{2}+12$.
Substitute the given coordinates for point A: $x=7, y=6$

$$
\begin{aligned}
6 & =a(7-4)^{2}+12 \\
6 & =9 a+12 \\
-6 & =9 a \\
a & =-\frac{2}{3}
\end{aligned}
$$

So, the equation of the function is:

$$
y=-\frac{2}{3}(x-4)^{2}+12
$$

b) The graph passes through $\mathrm{B}(2,-5)$ and has x-intercepts -3 and 4 .

$$
\begin{array}{rlrl}
\text { Use } y & =a\left(x-x_{1}\right)\left(x-x_{2}\right) & & \text { Substitute: } x_{1}=-3 \text { and } x_{2}=4 \\
y & =a(x+3)(x-4) & & \text { Substitute for } \mathrm{B}(2,-5) . \\
-5 & =a(2+3)(2-4) & & \\
-5 & =-10 a & & \\
& a & =0.5 & \\
& \text { In factored form, the equation is: } y=0.5(x+3)(x-4)
\end{array}
$$

4.5

7. Write this equation in standard form.

$$
\begin{aligned}
& y=-3 x^{2}+24 x-45 \\
& y=-3\left(x^{2}-8 x\right)-45
\end{aligned}
$$

Add and subtract: $\left(\frac{-8}{2}\right)^{2}=16$

$$
\begin{aligned}
y & =-3\left(x^{2}-8 x\right)-45 \\
& =-3\left(x^{2}-8 x+16-16\right)-45 \\
& =-3\left(x^{2}-8 x+16\right)+48-45 \\
& =-3(x-4)^{2}+3
\end{aligned}
$$

4.6

8. Determine the intercepts, the equation of the axis of symmetry, and the coordinates of the vertex of the graph of each quadratic function, then sketch the graph.
a) $y=2 x^{2}+2 x-24$
b) $y=-\frac{1}{2} x^{2}-x+4$

The y-intercept is 4 .
Factor the equation.

$$
\begin{aligned}
y & =-\frac{1}{2} x^{2}-x+4 \\
& =-\frac{1}{2}\left(x^{2}+2 x-8\right) \\
& =-\frac{1}{2}(x+4)(x-2)
\end{aligned}
$$

The x-intercepts are: -4 and 2
The mean of the intercepts is:
$\frac{-4+2}{2}=-1$
So, the equation of the axis of
symmetry is: $x=-1$
Substitute $x=-1$ in

$$
\begin{aligned}
y & =-\frac{1}{2} x^{2}-x+4 \\
& =-\frac{1}{2}(-1)^{2}+1+4 \\
& =4.5
\end{aligned}
$$

The coordinates of the vertex
are: $(-1,4.5)$

4.7

9. Select Audio Company sells an MP3 player for $\$ 75$. At that price, the company sells approximately 1000 players per week. The company predicts that for every $\$ 5$ increase in price, it will sell 50 fewer MP3 players. Which price for an MP3 player will maximize the revenue?

Let x represent the number of $\$ 5$ increases in the price of an MP3
player.
When the cost is $\$ 75,1000$ are sold for a revenue of:
$\$ 75(1000)=\$ 75000$
When the cost is $\$(75+5 x)$, $(1000-50 x)$ are sold for a revenue of $\$(75+5 x)(1000-50 x)$.
Let the revenue be R dollars.
An equation is: $R=(75+5 x)(1000-50 x)$
Use a graphing calculator to graph the equation.
From the graph, the maximum revenue is about $\$ 76562.50$ when the number of $\$ 5$ increases is 2.5 .
The number of increases is a whole number, so round 2.5 to 2 or to 3 .
Two increases of $\$ 5$ mean that the MP3 player will now cost:
$2(\$ 5)+\$ 75=\$ 85$
Three increases of $\$ 5$ mean that the MP3 player will now cost:
$3(\$ 5)+\$ 75=\$ 90$
To maximize the revenue, the MP3 player should sell for $\$ 85$ or $\$ 90$.

