Lesson 5.1 Exercises, pages 346–352

Α

4. Use the given graphs to write the solutions of the corresponding quadratic inequalities.

a)
$$2x^2 - 8x - 10 < 0$$

The solution is the values of x for which y < 0; that is, -1 < x < 5, $x \in \mathbb{R}$

b) $2x^2 - 8x - 10 \ge 0$

The solution is the values of x for which $y \ge 0$; that is, $x \le -1$ or $x \ge 5$, $x \in \mathbb{R}$

c)
$$-x^2 + 10x - 16 > 0$$

The solution is the values of x for which y > 0; that is, 2 < x < 8, $x \in \mathbb{R}$

d) $-x^2 + 10x - 16 \le 0$

The solution is the values of x for which $y \le 0$; that is, $x \le 2$ or $x \ge 8$, $x \in \mathbb{R}$

5. Solve this quadratic inequality.

$$(x - 2)(x - 6) \le 0$$

Solve: $(x - 2)(x - 6) = 0$
 $x = 2$ or $x = 6$
When $x \le 2$, such as $x = 0$, L.S. = 12; R.S. = 0;
so $x = 0$ does not satisfy the inequality.
When $2 \le x \le 6$, such as $x = 4$, L.S. = -4; R.S. =
so $x = 4$ does satisfy the inequality.
The solution is: $2 \le x \le 6$, $x \in \mathbb{R}$

0;

6. Solve each quadratic inequality. Represent each solution on a number line.

a) $x^2 - x - 12 \le 0$ Solve: $x^2 - x - 12 = 0$ (x - 4)(x + 3) = 0 x = 4 or x = -3When $x \le -3$, such as x = -4, L.S. = 8; R.S. = 0; so x = -4 does not satisfy the inequality. When $-3 \le x \le 4$, such as x = 0, L.S. = -12; R.S. = 0; so x = 0 does satisfy the inequality. The solution is: $-3 \le x \le 4$, $x \in \mathbb{R}$

		*							/	
-4	t −3	3 -2	2 -	1 0	1	2	2 3	3 4	+ 5	5

b) $4x^2 + 8x + 3 > 0$

В

2

Solve: $4x^2 + 8x + 3 = 0$ (2x + 3)(2x + 1) = 0 x = -1.5 or x = -0.5When x < -1.5, such as x = -2, L.S. = 3; R.S. = 0; so x = -2 does satisfy the inequality. When x > -0.5, such as x = 0, L.S. = 3; R.S. = 0; so x = 0 does satisfy the inequality. The solution is: x < -1.5 or x > -0.5, $x \in \mathbb{R}$

c)
$$-2x^2 + 5x + 3 \ge 0$$

Solve: $-2x^2 + 5x + 3 = 0$
 $2x^2 - 5x - 3 = 0$
 $(2x + 1)(x - 3) = 0$
 $x = -0.5$ or $x = 3$
When $x \le -0.5$, such as $x = -1$, L.S. $= -4$; R.S. $= 0$;
so $x = -1$ does not satisfy the inequality.
When $-0.5 \le x \le 3$, such as $x = 0$, L.S. $= 3$; R.S. $= 0$;
so $x = 0$ does satisfy the inequality.
The solution is: $-0.5 \le x \le 3$, $x \in \mathbb{R}$

- **7.** Solve each quadratic inequality. Represent each solution on a number line.
 - a) $-5x^2 > 17x 12$ Solve: $-5x^2 = 17x - 12$ $5x^2 + 17x - 12 = 0$ (5x - 3)(x + 4) = 0 x = 0.6 or x = -4When x < -4, such as x = -5, L.S. = -125; R.S. = -97; so x = -5 does not satisfy the inequality. When -4 < x < 0.6, such as x = 0, L.S. = 0; R.S. = -12; so x = 0 does satisfy the inequality. The solution is: -4 < x < 0.6, $x \in \mathbb{R}$

b)
$$4x^2 + 15x > -14$$

Solve: $4x^2 + 15x = -14$
 $4x^2 + 15x + 14 = 0$
 $(x + 2)(4x + 7) = 0$
 $x = -2 \text{ or } x = -1.75$
When $x < -2$, such as $x = -3$, L.S. $= -9$; R.S. $= -14$;
so $x = -3$ does satisfy the inequality.
When $x > -1.75$, such as $x = 0$, L.S. $= 0$; R.S. $= -14$;
so $x = 0$ does satisfy the inequality.
The solution is: $x < -2$ or $x > -1.75$, $x \in \mathbb{R}$

- **8.** Solve each quadratic inequality by graphing. Give the solutions to the nearest tenth.
 - a) $1.2x^2 + 3.5x \le 4.8$ **b**) $0 < 13.8 + 12.6x - 0.4x^2$ Rearrange the inequality. Graph: $y = 13.8 + 12.6x - 0.4x^2$ $1.2x^2 + 3.5x - 4.8 \le 0$ The critical values are Graph: $y = 1.2x^2 + 3.5x - 4.8$ approximately -1.1 and 32.6. The critical values are The solution of the inequality is the values of *x* for which approximately -3.9 and 1.0. The solution of the inequality y > 0; that is, is these points and the values $-1.1 < x < 32.6, x \in \mathbb{R}.$ of x for which $y \leq 0$; that is, $-3.9 \leq x \leq 1.0, x \in \mathbb{R}.$

9. Use the quadratic formula to solve each quadratic inequality. Give the solutions to the nearest tenth.

a)	$2x^2-3x-4<0$	b)	$\frac{x^2}{3} + \frac{2x}{5} > 1$
	Solve: $2x^2 - 3x - 4 = 0$ Substitute: a = 2, b = -3, c = -4		Solve: $5x^2 + 6x - 15 = 0$ Substitute: a = 5, b = 6, c = -15
	$in: x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		$in: x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	$x = \frac{3 \pm \sqrt{(-3)^2 - 4(2)(-4)}}{2(2)}$		$x = \frac{-6 \pm \sqrt{6^2 - 4(5)(-15)}}{2(5)}$
	$x=\frac{3\pm\sqrt{41}}{4}$		$x=\frac{-6\pm\sqrt{336}}{10}$
	$x \doteq 2.4$ or $x \doteq -0.9$		$x \doteq -2.4$ or $x \doteq 1.2$
	When $x < -0.9$, such as $x = -1$,		When $x < -2.4$, such as $x = -3$,
	L.S. = 1; R.S. = 0; so $x = 1$		L.S. = 1.8; R.S. = 1; so $x = -3$
	does not satisfy the inequality.		does satisfy the inequality.
	When $-0.9 < x < 2.4$, such as		When $x > 1.2$, such as $x = 3$,
	x = 0, L.S. $= -4$; R.S. $= 0$;		L.S. = 4.2; R.S. = 1; so $x = 3$
	so $x = 0$ does satisfy the		does satisfy the inequality.
	inequality.		The solution is:
	The solution is:		$x < -2.4 \text{ or } x > 1.2, x \in \mathbb{R}$
	$-0.9 < x < 2.4, x \in \mathbb{R}$		

10. Solve each quadratic inequality. Give the solutions to the nearest tenth where necessary. Use a different strategy each time. Explain each strategy.

a) $3x^2 < 21x$

Use intervals and test points. Solve: $3x^2 < 21x$ $3x^2 - 21x = 0$ 3x(x - 7) = 0x = 0 or x = 7When x < 0, such as x = -1, L.S. = 3; R.S. = -21; so x = -1 does not satisfy the inequality. When 0 < x < 7, such as x = 1, L.S. = 3; R.S. = 21; so x = 1 does satisfy the inequality. The solution is: 0 < x < 7, $x \in \mathbb{R}$

b) $4x^2 - 1 > 3x + 25$

4

Rearrange the inequality. $4x^2 - 3x - 26 > 0$ Use a graphing calculator. Graph: $y = 4x^2 - 3x - 26$ The critical values are approximately -2.2 and 3.0. The solution of the inequality is the values of x for which y > 0; that is, x < -2.2 or x > 3.0, $x \in \mathbb{R}$.

- **11.** Consider this inequality: $4x^2 20x + 25 \le 0$
 - a) Solve the inequality by factoring.Illustrate the solution on a number line.

Solve: $4x^2 - 20x + 25 = 0$ (2x - 5)(2x - 5) = 0 x = 2.5When $x \le 2.5$, such as x = 2, L.S. = 1; R.S. = 0; so x = 2 does not satisfy the inequality. When $x \ge 2.5$, such as x = 3, L.S. = 1; R.S. = 0; so x = 3 does not satisfy the inequality. The solution is: x = 2.5

b) Solve the inequality by graphing. Sketch the graph.

The graph of $y = 4x^2 - 20x + 25$ opens up, has *x*-intercept 2.5 and is congruent to $y = 4x^2$. The only point where $4x^2 - 20x + 25 \le 0$ is at x = 2.5.

c) i) What do you notice about the solution of the inequality?

The solution is one number.

ii) Write a different inequality that has the same number of solutions. What strategy did you use?

Sample response: Write the equation of a parabola that touches the *x*-axis; for example, $y = -(x - 3)^2$. Another inequality with exactly one solution is: $-x^2 + 6x - 9 \ge 0$.

12. The product of two consecutive even integers is at least 48. What might the integers be?

Let the lesser integer be x, then the greater integer is x + 2. An inequality is: $x(x + 2) \ge 48$ Solve the equation: $x^2 + 2x - 48 = 0$ (x - 6)(x + 8) = 0 x = 6 or x = -8When x = 6, x + 2 = 8When x = -8, x + 2 = -6Any pair of consecutive even integers greater than or equal to 6 and 8, or less than or equal to -8 and -6 are solutions to the problem; such as 8 and 10, 10 and 12, -8 and -10, -10 and -12.

13. A tennis ball is thrown upward at an initial speed of 15 m/s. The approximate height of the ball, *h* metres, after *t* seconds, is given by the equation $h = 15t - 5t^2$. Determine the time period for which the ball is higher than 10 m.

An inequality that represents this situation is: $15t - 5t^2 > 10$ A related quadratic equation is: $5t^2 - 15t + 10 = 0$, or $t^2 - 3t + 2 = 0$ Solve the equation. (t - 1)(t - 2) = 0 t = 1 or t = 2When t < 1, such as t = 0, L.S. = 0; R.S. = 10; so t = 0 does not satisfy the inequality. When 1 < t < 2, such as t = 1.5, L.S. = 11.25; R.S. = 10; so t = 1.5 does satisfy the inequality. The solution is: 1 < t < 2So, the tennis ball is higher than 10 m between 1 and 2 s after it is thrown.

- **14.** $2x^2 + bx + 7 = 0$ is a quadratic equation. For which values of *b* does the quadratic equation have:
 - a) two real roots?

```
For 2x^2 + bx + 7 = 0 to have 2 real roots, its discriminant is greater
than 0.
b^2 - 4ac > 0 Substitute: a = 2, c = 7
b^2 - 4(2)(7) > 0
b^2 > 56
b > \sqrt{56} or b < -\sqrt{56}
```

b) no real roots?

For $2x^2 + bx + 7 = 0$ to have no real roots, its discriminant is negative. $b^2 - 4(2)(7) < 0$ $b^2 < 56$ $b < \sqrt{56}$ and $b > -\sqrt{56}$, which is written $-\sqrt{56} < b < \sqrt{56}$ **15.** Create an inequality that has each solution.

a) $-13 \le x \le -3$	b) $x < -1.1$ or $x > 0.4$
a) $-13 \le x \le -3$	b) $x < -1.1$ or $x > 0.4$
Work backward.	The critical points are
The critical points are	-1.1 and 0.4.
-13 and -3 .	A related quadratic
So a related quadratic	equation is:
equation is:	(x + 1.1)(x - 0.4) = 0
(x + 13)(x + 3) = 0	$x^2 + 0.7x - 0.44 = 0$
$x^2 + 16x + 39 = 0$	On a graphing calculator,
On a graphing calculator,	graph the related function.
graph the related function.	The solution is all real
The solution is the <i>x</i> -intercepts	numbers to the left and to
and all real numbers between	the right of the x-intercepts.
them. An inequality is:	An inequality is:
$x^2 + 16x + 39 \le 0$	$x^2 + 0.7x - 0.44 > 0$

С