Lesson 5.1 Exercises, pages 346-352

A
4. Use the given graphs to write the solutions of the corresponding quadratic inequalities.
a) $2 x^{2}-8 x-10<0$

The solution is the values of x for which $y<0$; that is, $-1<x<5, x \in \mathbb{R}$
b) $2 x^{2}-8 x-10 \geq 0$

The solution is the values of x for which $y \geq 0$; that is, $x \leq-1$ or $x \geq 5, x \in \mathbb{R}$

c) $-x^{2}+10 x-16>0$

The solution is the values of x for which $y>0$; that is, $2<x<8, x \in \mathbb{R}$
d) $-x^{2}+10 x-16 \leq 0$

The solution is the values of x for which $y \leq 0$; that is, $x \leq 2$ or $x \geq 8, x \in \mathbb{R}$

5. Solve this quadratic inequality.
$(x-2)(x-6) \leq 0$
Solve: $(x-2)(x-6)=0$
$x=2$ or $x=6$
When $x \leq 2$, such as $x=0$, L.S. $=12$; R.S. $=0$;
so $x=0$ does not satisfy the inequality.
When $2 \leq x \leq 6$, such as $x=4$, L.S. $=-4$; R.S. $=0$;
so $x=4$ does satisfy the inequality.
The solution is: $2 \leq x \leq 6, x \in \mathbb{R}$
6. Solve each quadratic inequality. Represent each solution on a number line.
a) $x^{2}-x-12 \leq 0$

Solve: $x^{2}-x-12=0$

$$
(x-4)(x+3)=0
$$

$x=4$ or $x=-3$
When $x \leq-3$, such as $x=-4$, L.S. $=8$; R.S. $=0$;
so $x=-4$ does not satisfy the inequality.
When $-3 \leq x \leq 4$, such as $x=0$, L.S. $=-12$; R.S. $=0$;
so $x=0$ does satisfy the inequality.
The solution is: $-3 \leq x \leq 4, x \in \mathbb{R}$

b) $4 x^{2}+8 x+3>0$

Solve: $4 x^{2}+8 x+3=0$
$(2 x+3)(2 x+1)=0$
$x=-1.5$ or $x=-0.5$
When $x<-1.5$, such as $x=-2$, L.S. $=3$; R.S. $=0$;
so $x=-2$ does satisfy the inequality.
When $x>-0.5$, such as $x=0$, L.S. $=3$; R.S. $=0$;
so $x=0$ does satisfy the inequality.
The solution is: $x<-1.5$ or $x>-0.5, x \in \mathbb{R}$

c) $-2 x^{2}+5 x+3 \geq 0$

Solve: $-2 x^{2}+5 x+3=0$
$2 x^{2}-5 x-3=0$
$(2 x+1)(x-3)=0$
$x=-0.5$ or $x=3$
When $x \leq-0.5$, such as $x=-1$, L.S. $=-4$; R.S. $=0$;
so $x=-1$ does not satisfy the inequality.
When $-0.5 \leq x \leq 3$, such as $x=0$, L.S. $=3$; R.S. $=0$;
so $x=0$ does satisfy the inequality.
The solution is: $-0.5 \leq x \leq 3, x \in \mathbb{R}$

7. Solve each quadratic inequality. Represent each solution on a number line.
a) $-5 x^{2}>17 x-12$

Solve: $-5 x^{2}=17 x-12$
$5 x^{2}+17 x-12=0$
$(5 x-3)(x+4)=0$
$x=0.6$ or $x=-4$
When $x<-4$, such as $x=-5$, L.S. $=-125$; R.S. $=-97$;
so $x=-5$ does not satisfy the inequality.
When $-4<x<0.6$, such as $x=0$, L.S. $=0$; R.S. $=-12$;
so $x=0$ does satisfy the inequality.
The solution is: $-4<x<0.6, x \in \mathbb{R}$

b) $4 x^{2}+15 x>-14$

Solve: $4 x^{2}+15 x=-14$
$4 x^{2}+15 x+14=0$
$(x+2)(4 x+7)=0$
$x=-2$ or $x=-1.75$
When $x<-2$, such as $x=-3$, L.S. $=-9$; R.S. $=-14$;
so $x=-3$ does satisfy the inequality.
When $x>-1.75$, such as $x=0$, L.S. $=0$; R.S. $=-14$;
so $x=0$ does satisfy the inequality.
The solution is: $x<-2$ or $x>-1.75, x \in \mathbb{R}$

8. Solve each quadratic inequality by graphing. Give the solutions to the nearest tenth.
a) $1.2 x^{2}+3.5 x \leq 4.8$
b) $0<13.8+12.6 x-0.4 x^{2}$
Rearrange the inequality.
$1.2 x^{2}+3.5 x-4.8 \leq 0$
Graph: $y=1.2 x^{2}+3.5 x-4.8$ The critical values are approximately -3.9 and 1.0. The solution of the inequality is these points and the values Graph: $y=13.8+12.6 x-0.4 x^{2}$ The critical values are approximately -1.1 and 32.6 . The solution of the inequality is the values of x for which $y>0$; that is, $-1.1<x<32.6, x \in \mathbb{R}$. of x for which $y \leq 0$; that is, $-3.9 \leq x \leq 1.0, x \in \mathbb{R}$.
9. Use the quadratic formula to solve each quadratic inequality. Give the solutions to the nearest tenth.
a) $2 x^{2}-3 x-4<0$
b) $\frac{x^{2}}{3}+\frac{2 x}{5}>1$

Solve: $2 x^{2}-3 x-4=0$
Substitute:
$a=2, b=-3, c=-4$
in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{3 \pm \sqrt{(-3)^{2}-4(2)(-4)}}{2(2)}$
$x=\frac{3 \pm \sqrt{41}}{4}$
$x \doteq 2.4$ or $x \doteq-0.9$
When $x<-0.9$, such as $x=-1$,
L.S. $=1$; R.S. $=0$; so $x=1$
does not satisfy the inequality.
When $-0.9<x<2.4$, such as
$x=0$, L.S. $=-4$; R.S. $=0$;
so $x=0$ does satisfy the inequality.
The solution is:
$-0.9<x<2.4, x \in \mathbb{R}$

Solve: $5 x^{2}+6 x-15=0$
Substitute:
$a=5, b=6, c=-15$
in: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-6 \pm \sqrt{6^{2}-4(5)(-15)}}{2(5)}$
$x=\frac{-6 \pm \sqrt{336}}{10}$
$x \doteq-2.4$ or $x \doteq 1.2$
When $x<-2.4$, such as $x=-3$, L.S. $=1.8$; R.S. $=1$; so $x=-3$
does satisfy the inequality.
When $x>1.2$, such as $x=3$, L.S. $=4.2$; R.S. $=1$; so $x=3$ does satisfy the inequality. The solution is:
$x<-2.4$ or $x>1.2, x \in \mathbb{R}$
10. Solve each quadratic inequality. Give the solutions to the nearest tenth where necessary. Use a different strategy each time. Explain each strategy.
a) $3 x^{2}<21 x$

Use intervals and test points.
Solve: $3 x^{2}<21 x$
$3 x^{2}-21 x=0$
$3 x(x-7)=0$
$x=0$ or $x=7$
When $x<0$, such as $x=-1$, L.S. $=3$; R.S. $=-21$;
so $x=-1$ does not satisfy the inequality.
When $0<x<7$, such as $x=1$, L.S. $=3$; R.S. $=21$;
so $x=1$ does satisfy the inequality.
The solution is: $0<x<7, x \in \mathbb{R}$
b) $4 x^{2}-1>3 x+25$

Rearrange the inequality.
$4 x^{2}-3 x-26>0$
Use a graphing calculator.
Graph: $y=4 x^{2}-3 x-26$
The critical values are approximately -2.2 and 3.0.
The solution of the inequality is the values of x for which $y>0$; that is, $x<-2.2$ or $x>3.0, x \in \mathbb{R}$.
11. Consider this inequality: $4 x^{2}-20 x+25 \leq 0$
a) Solve the inequality by factoring.

Illustrate the solution on a number line.
Solve: $4 x^{2}-20 x+25=0$

$$
\begin{aligned}
(2 x-5)(2 x-5) & =0 \\
x & =2.5
\end{aligned}
$$

When $x \leq 2.5$, such as $x=2$, L.S. $=1$; R.S. $=0$;
so $x=2$ does not satisfy the inequality.
When $x \geq 2.5$, such as $x=3$, L.S. $=1$; R.S. $=0$;
so $x=3$ does not satisfy the inequality.
The solution is: $x=2.5$

b) Solve the inequality by graphing.

Sketch the graph.
The graph of $y=4 x^{2}-20 x+25$ opens up, has x-intercept 2.5 and is congruent to $y=4 x^{2}$.
The only point where $4 x^{2}-20 x+25 \leq 0$ is at $x=2.5$.

c) i) What do you notice about the solution of the inequality?

The solution is one number.
ii) Write a different inequality that has the same number of solutions. What strategy did you use?

Sample response: Write the equation of a parabola that touches the x-axis; for example, $y=-(x-3)^{2}$. Another inequality with exactly one solution is: $-x^{2}+6 x-9 \geq 0$.
12. The product of two consecutive even integers is at least 48. What might the integers be?

Let the lesser integer be x, then the greater integer is $x+2$.
An inequality is: $x(x+2) \geq 48$
Solve the equation: $x^{2}+2 x-48=0$

$$
(x-6)(x+8)=0
$$

$x=6$ or $x=-8$
When $x=6, x+2=8$
When $x=-8, x+2=-6$
Any pair of consecutive even integers greater than or equal to 6 and 8, or less than or equal to -8 and -6 are solutions to the problem; such as 8 and 10,10 and $12,-8$ and $-10,-10$ and -12 .
13. A tennis ball is thrown upward at an initial speed of $15 \mathrm{~m} / \mathrm{s}$. The approximate height of the ball, h metres, after t seconds, is given by the equation $h=15 t-5 t^{2}$. Determine the time period for which the ball is higher than 10 m .

An inequality that represents this situation is: $15 t-5 t^{2}>10$
A related quadratic equation is:
$\begin{aligned} & 5 t^{2}-15 t+10=0, \text { or } \\ & t^{2}-3 t+2\end{aligned} \quad$ Solve the equation.
$(t-1)(t-2)=0$
$t=1$ or $t=2$
When $t<1$, such as $t=0$, L.S. $=0$; R.S. $=10$;
so $t=0$ does not satisfy the inequality.
When $1<t<2$, such as $t=1.5$, L.S. $=11.25$; R.S. $=10$;
so $t=1.5$ does satisfy the inequality.
The solution is: $1<t<2$
So, the tennis ball is higher than 10 m between 1 and 2 s after it is thrown.
14. $2 x^{2}+b x+7=0$ is a quadratic equation. For which values of b does the quadratic equation have:
a) two real roots?

For $2 x^{2}+b x+7=0$ to have 2 real roots, its discriminant is greater than 0 .
$b^{2}-4 a c>0 \quad$ Substitute: $a=2, c=7$
$b^{2}-4(2)(7)>0$
$b^{2}>56$
$b>\sqrt{56}$ or $b<-\sqrt{56}$
b) no real roots?

For $2 x^{2}+b x+7=0$ to have no real roots, its discriminant is negative.
$b^{2}-4(2)(7)<0$
$b^{2}<56$
$b<\sqrt{56}$ and $b>-\sqrt{56}$,
which is written $-\sqrt{56}<b<\sqrt{56}$

C
15. Create an inequality that has each solution.
a) $-13 \leq x \leq-3$
b) $x<-1.1$ or $x>0.4$

Work backward.
The critical points are -13 and -3 .
So a related quadratic equation is:

The critical points are
-1.1 and 0.4 .
A related quadratic
equation is:
$(x+1.1)(x-0.4)=0$
$(x+13)(x+3)=0$
$x^{2}+16 x+39=0$
On a graphing calculator,
graph the related function.
The solution is the x-intercepts and all real numbers between them. An inequality is:
$x^{2}+16 x+39 \leq 0$
$x^{2}+0.7 x-0.44=0$
On a graphing calculator, graph the related function.
The solution is all real
numbers to the left and to the right of the x-intercepts.
An inequality is:
$x^{2}+0.7 x-0.44>0$

