Lesson 5.2 Exercises, pages 360–368

Α

3. Determine whether each point is a solution of the given inequality.

a) $3x - 2y \ge -16$ A(-3, 4) In the inequality, substitute: x = -3, y = 4L.S.: 3(-3) - 2(4) = -17 R.S. = -16Since the L.S. < R.S., the point is not a solution.

b) $4x - y \le 5$ B(-1, 1)

In the inequality, substitute: x = -1, y = 1L.S.: 4(-1) - 1 = -5 R.S. = 5 Since the L.S. < R.S., the point is a solution.

c) 3y > 2x - 7 C(-2,-5)

In the inequality, substitute: x = -2, y = -5L.S.: 3(-5) = -15 R.S.: 2(-2) - 7 = -11Since the L.S. < R.S., the point is not a solution.

d) 5x - 2y + 8 < 0 D(6, 7)

In the inequality, substitute: x = 6, y = 7L.S.: 5(6) - 2(7) + 8 = 24 R.S. = 0 Since the L.S. > R.S., the point is not a solution.

4. Match each graph with an inequality below.

The line has slope -2and y-intercept 2, so its equation is: y = -2x + 2, or 2x + y = 2The inequality is: 2x + y > 2 ii) 2x + y > 2iv) $x - 2y \ge -1$ b) y = -2

> The line has slope 0.5 and y-intercept 0.5, so its equation is: y = 0.5x + 0.5, or x - 2y = -1The inequality is: $x - 2y \ge -1$

and y-intercept 2, so its y = 0.5x + 0.5

8

5. Write an inequality to describe each graph.

The equation can be written as: y = -x + 3The line is broken, and the shaded region is below the line so an inequality is: y < -x + 3, or x + y < 3

The equation can be written as: y = x + 3The line is broken, and the shaded region is above the line so an inequality is: y > x + 3, or x - y < -3

The equation can be written as: y = x - 3The line is solid, and the shaded region is below the line so an inequality is: $y \le x - 3$, or $x - y \ge 3$

The equation can be written as: y = -x - 3The line is broken, and the shaded region is above the line so the inequality is: y > -x - 3, or x + y > -3

6. Graph each linear inequality.

a) $y \le 2x + 5$

В

b)
$$y > -\frac{1}{3}x + 1$$

Graph of $y > -\frac{1}{3}x + 1$								
			У					
V = _	1	4-						
	3++;	1						
			_					
			1		-	X		
-4	-2	0		2				
		†2-						

Use intercepts to graph the related functions.

When x = 0, y = 5When y = 0, x = -2.5Draw a solid line. Shade the region below the line. When x = 0, y = 1When y = 0, x = 3Draw a broken line. Shade the region above the line.

c)
$$y < -4x - 4$$

d)
$$y \ge \frac{4}{3}x - 2$$

Use intercepts to graph the related functions. When x = 0, y = -4 When When y = 0, x = -1 When Draw a broken line. Shade Draw a the region below the line. the region

When x = 0, y = -2When y = 0, x = 1.5Draw a solid line. Shade the region above the line. **7.** Graph each linear inequality. Give the coordinates of 3 points that satisfy the inequality.

a) 5x + 3y > 15

When x = 0, y = 4.5

b) $3x - 2y \le -9$

Use intercepts to graph the related functions.

When x = 0, y = 5When y = 0, x = 3Use (0, 0) as a test point. L.S. = 0; R.S. = 15 Since 0 < 15, the origin does not lie in the shaded region. Draw a broken line. Shade the region above the line. From the graph, 3 points that satisfy the inequality are: (2, 3), (1, 5), (3, 2)

c) $x + 6y \ge -4$

Graph the related functions. When y = 0, x = -4When y = -1, x = 2Use (0, 0) as a test point. L.S. = 0; R.S. = -4Since 0 > -4, the origin lies in the shaded region. Draw a solid line. Shade the region above the line. From the graph, 3 points that satisfy the inequality are: (2, 1), (1, 2), (3, 3) When y = 0, x = -3Use (0, 0) as a test point. L.S. = 0; R.S. = -9 Since 0 > -9, the origin does not lie in the shaded region. Draw a solid line. Shade the region above the line. From the graph, 3 points that satisfy the inequality are: (-2, 3), (-1, 4), (-1, 6)

d) 4x - 7y < 21

Graph of $4x - 7y < 21$									
		У							
							1	•X	
-2	0		2	2	_	-	6	5	
	-2-			1	1-	; L			
	-2	/	NX	-	.,				
	1								
	-4								
	6-								
	-0								

When x = 0, y = -3When y = 1, x = 7Use (0, 0) as a test point. L.S. = 0; R.S. = 21 Since 0 < 21, the origin lies in the shaded region. Draw a broken line. Shade the region above the line. From the graph, 3 points that satisfy the inequality are: (-1, 3), (1, -1), (2, 3) **8.** Write an inequality to describe each graph.

9. A student graphed the inequality 2x - y < 0 and used the origin as a test point. Could the student then shade the correct region of the graph? Explain your answer.

No, the line passes through the origin, so it cannot be used as a test point. The test point must not lie on the line that divides the region.

10. Use technology to graph each linear inequality. Sketch the graph.

b) $y > \frac{4}{9}x + \frac{3}{7}$

of the graph.

Graph: $y = \frac{4}{9}x + \frac{3}{7}$

The boundary is not part

 $y \le \frac{8}{3}x - \frac{25}{3}$ Graph: $y = \frac{8}{3}x - \frac{25}{3}$ The boundary is part of the graph.

d) $4.8x + 2.3y - 3.7 \le 0$

2.3*y* ≤ −4.8*x* + 3.7

$$y ≤ \frac{-4.8}{2.3}x + \frac{3.7}{2.3}$$

Graph: $y = \frac{-4.8}{2.3}x + \frac{3.7}{2.3}$
The boundary is part of the graph.

- **11.** Nina takes her friends to an ice cream store. A milkshake costs \$3 and a chocolate sundae costs \$2.50. Nina has \$18 in her purse.
 - a) Write an inequality to describe how Nina can spend her money.

Let *m* represent the number of milkshakes and *s* represent the number of sundaes. An inequality is: $3m + 2.5s \le 18$

b) Determine 3 possible ways Nina can spend up to \$18.

```
Determine the coordinates of 2 points that
satisfy the related function.
When s = 0, m = 6
When s = 6, m = 1
Join the points with a solid line.
The solution is the points, with whole-number
coordinates, on and below the line.
Three ways are: 4 milkshakes, 2 sundaes; 3 milkshakes, 3 sundaes;
2 milkshakes, 4 sundaes
```


c) What is the most money Nina can spend and still have change from \$18?

The point, with whole-number coordinates, that is closest to the line has coordinates (5, 1); the cost, in dollars, is: (5)(3) + 1(2.50) = 17.50Nina can spend \$17.50 and still have change.

- **12.** The relationship between two negative numbers *p* and *q* is described by the inequality p 2q > -6.
 - a) What are the restrictions on the variables?

Since the numbers are negative, p < 0 and q < 0

b) Graph the inequality.

Determine the coordinates of 2 points that satisfy the related function. When p = -10, q = -2When p = -6, q = 0Draw a broken line through the points. The solution is the points below the line in Quadrant 3.

c) Write the coordinates of 2 points that satisfy the inequality.

Sample response: Two points are: (-4, -4) and (-12, -4)

13. Graph each inequality for the given restrictions on the variables.

a) y > -3x + 4; for x > 0, y > 0

Since x > 0, y > 0, the graph is in Quadrant 1. The graph of the related function has slope -3 and *y*-intercept 4. Draw a broken line to represent the related function in Quadrant 1. Shade the region above the line. The axes bounding the graph are broken lines.

b) 2x - 3y < 6; for $x \ge 0, y \le 0$

Since $x \ge 0$, $y \le 0$, the graph is in Quadrant 4. Graph the related function. When y = 0, x = 3When x = 0, y = -2Draw a broken line in Quadrant 4. Use (0, 0) as a test point. L.S. = 0; R.S. = 6 Since 0 < 6, the origin lies in the shaded region. Shade the region above the line.

c) 4x + 5y - 20 > 0; for $x \le 0, y \ge 0$

Since $x \le 0$, $y \ge 0$, the graph is in Quadrant 2. Graph the related function. When x = 0, y = 4When x = -5, y = 8Draw a broken line in Quadrant 2. Use (0, 0) as a test point. L.S. = -20; R.S. = 0Since -20 < 0, the origin does not lie in the shaded region. Shade the region above the line.

14. a) For A(9, *a*) to be a solution of 3x - 2y < 5, what must be true about *a*?

Substitute the coordinates of A in the inequality. 3(9) - 2(a) < 5 Solve for a. 2a > 22a > 11

b) For B(b, -3) to be a solution of $3x + 4y \ge -12$, what must be true about *b*?

Substitute the coordinates of B in the inequality. $3(b) + 4(-3) \ge -12$ Solve for b. $3b \ge 0$ $b \ge 0$

Graph of $4x + 5y - 20 > 0$, $x \le 0, y \ge 0$								
					У			
				6-				
				Ľ				
-				1				
				2-				
-						x		
				0		-		
	-	- 4		U				

- **15.** A personal trainer books clients for either 45-min or 60-min appointments. He meets with clients a maximum of 40 h each week.
 - **a**) Write an inequality that represents the trainer's weekly appointments.

```
Let x represent the number of 45-min
appointments and y represent the number
of 60-min appointments.
An inequality is: 45x + 60y \le 2400
Divide by 15.
3x + 4y \le 160
```

b) Graph the related equation, then describe the graph of the inequality.

Determine the coordinates of 2 points that satisfy the related function. When x = 0, y = 40When x = 20, y = 25Join the points with a solid line. The solution is the points, with whole-number coordinates, on and below the line.

c) How many 45-min appointments are possible if no 60-min appointments are scheduled? Where is the point that represents this situation located on the graph?

For no 60-min appointments, y = 0, so the point is on the *x*-axis; it is the point with whole-number coordinates that is closest to the *x*-intercept of the graph of the related equation. When y = 0, $x = \frac{2400}{45}$, or 53.3 Fifty-three 45-min appointments are possible.

16. Graph this inequality. Identify the strategy you used and explain why you chose that strategy.

$$\frac{x}{3} + \frac{y}{2} \ge 1$$

Graph the related function. Determine the intercepts. When y = 0, x = 3When x = 0, y = 2Draw a solid line. Use (0, 0) as a test point. L.S. = 0; R.S. = 1 Since 0 < 1, the origin is not in the shaded region. Shade the region above the line.

С

17. How is a linear inequality in two variables similar to a linear inequality in one variable? How are the inequalities different?

The solutions of both inequalities are usually sets of values. A linear inequality in one variable is a set of numbers that can be represented on a number line. A linear inequality in two variables is a set of ordered pairs that can be represented on a coordinate plane.