Lesson 5.2 Exercises, pages 360-368

A
3. Determine whether each point is a solution of the given inequality.
a) $3 x-2 y \geq-16 \quad \mathrm{~A}(-3,4)$

In the inequality, substitute: $x=-3, y=4$
L.S.: $3(-3)-2(4)=-17 \quad$ R.S. $=-16$

Since the L.S. < R.S., the point is not a solution.
b) $4 x-y \leq 5 \quad \mathrm{~B}(-1,1)$

In the inequality, substitute: $x=-1, y=1$
L.S.: $4(-1)-1=-5 \quad$ R.S. $=5$

Since the L.S. < R.S., the point is a solution.
c) $3 y>2 x-7 \quad \mathrm{C}(-2,-5)$

In the inequality, substitute: $x=-2, y=-5$
L.S.: $3(-5)=-15 \quad$ R.S.: $2(-2)-7=-11$

Since the L.S. < R.S., the point is not a solution.
d) $5 x-2 y+8<0 \quad \mathrm{D}(6,7)$

In the inequality, substitute: $x=6, y=7$
L.S.: $5(6)-2(7)+8=24 \quad$ R.S. $=0$

Since the L.S. > R.S., the point is not a solution.
4. Match each graph with an inequality below.
i) $2 x+y \leq-2$
ii) $2 x+y>2$
iii) $x-2 y<2$
iv) $x-2 y \geq-1$
a)

The line has slope -2
and y-intercept 2 , so its equation is:
$y=-2 x+2$, or $2 x+y=2$
b)

The line has slope 0.5 and y-intercept 0.5 , so its equation is:
$y=0.5 x+0.5$, or $x-2 y=-1$
The inequality is:
The inequality is:
$x-2 y \geq-1$
$2 x+y>2$
c)

The line has slope -2 and y-intercept -2 , so its equation is: $y=-2 x-2$, or $2 x+y=-2$ The inequality is:

$$
2 x+y \leq-2
$$

d)

The line has slope 0.5 and y-intercept -1 , so its equation is:
$y=0.5 x-1$, or $x-2 y=2$
The inequality is:
$x-2 y<2$
5. Write an inequality to describe each graph.

The equation can be written as: $y=-x+3$ The line is broken, and the shaded region is below the line so an inequality is: $y<-x+3$, or $x+y<3$
c)

The equation can be written as: $y=x+3$ The line is broken, and the shaded region is above the line so an inequality is: $y>x+3$, or $x-y<-3$
b)

The equation can be written as: $y=x-3$ The line is solid, and the shaded region is below the line so an inequality is: $y \leq x-3$, or $x-y \geq 3$
d)

The equation can be written as: $y=-x-3$ The line is broken, and the shaded region is above the line so the inequality is: $y>-x-3$, or $x+y>-3$

B
6. Graph each linear inequality.
a) $y \leq 2 x+5$
b) $y>-\frac{1}{3} x+1$

Use intercepts to graph the related functions.
When $x=0, y=5$
When $x=0, y=1$
When $y=0, x=-2.5$
Draw a solid line. Shade
When $y=0, x=3$
Draw a broken line. Shade the region above the line.
c) $y<-4 x-4$
d) $y \geq \frac{4}{3} x-2$

Use intercepts to graph the related functions.

When $x=0, y=-4$
When $y=0, x=-1$
Draw a broken line. Shade the region below the line.

When $x=0, y=-2$
When $y=0, x=1.5$
Draw a solid line. Shade
the region above the line.
7. Graph each linear inequality. Give the coordinates of 3 points that satisfy the inequality.
a) $5 x+3 y>15$
b) $3 x-2 y \leq-9$
Graph of $5 x+3 y>15$

Use intercepts to graph the related functions.
When $x=0, y=5$
When $x=0, y=4.5$
When $y=0, x=3$
Use (0,0) as a test point.
L.S. $=0 ;$ R.S. $=15$

Since $0<15$, the origin does not lie in the shaded region. Draw a broken line. Shade the region above the line. From the graph, 3 points that satisfy the inequality are: $(2,3),(1,5),(3,2)$
c) $x+6 y \geq-4$
Graph of $x+6 y \geq-4$

							y		
						2			
						2			
									x
		$x+6 y$	$=$	-4					
					-2				
					-2				
						-4			
						-4			

Graph the related functions.
When $y=0, x=-4$
When $y=-1, x=2$
Use $(0,0)$ as a test point.
L.S. $=0$; R.S. $=-4$

Since $0>-4$, the origin lies in the shaded region. Draw a solid line. Shade the region above the line. From the graph, 3 points that satisfy the inequality are: $(2,1),(1,2),(3,3)$
d) $4 x-7 y<21$

When $x=0, y=-3$
When $y=1, x=7$
Use $(0,0)$ as a test point.
L.S. $=0 ;$ R.S. $=21$

Since $0<21$, the origin lies in the shaded region. Draw a broken line. Shade the region above the line. From the graph, 3 points that satisfy the inequality are: $(-1,3),(1,-1),(2,3)$
8. Write an inequality to describe each graph.

The line has slope -2 and y-intercept 1 , so its equation is: $y=-2 x+1$ The line is solid and the region below is shaded. An inequality is:

$$
y \leq-2 x+1
$$

The line has slope $\frac{3}{4}$ and y-intercept 5, so its
equation is: $y=\frac{3}{4} x+5$,
The line is broken and the region below is shaded.
An inequality is:
$y<\frac{3}{4} x+5$
9. A student graphed the inequality $2 x-y<0$ and used the origin as a test point. Could the student then shade the correct region of the graph? Explain your answer.

No, the line passes through the origin, so it cannot be used as a test point. The test point must not lie on the line that divides the region.
10. Use technology to graph each linear inequality. Sketch the graph.
a) $y<1.6 x-1.95$
b) $y>\frac{4}{9} x+\frac{3}{7}$
Graph: $y=\frac{4}{9} x+\frac{3}{7}$
The boundary is not part of the graph.

c) $8 x-3 y-25 \geq 0$
d) $4.8 x+2.3 y-3.7 \leq 0$
$3 y \leq 8 x-25$
$y \leq \frac{8}{3} x-\frac{25}{3}$
Graph: $y=\frac{8}{3} x-\frac{25}{3}$
The boundary is part of the graph.

$$
\begin{aligned}
& 2.3 y \leq-4.8 x+3.7 \\
& \qquad y \leq \frac{-4.8}{2.3} x+\frac{3.7}{2.3} \\
& \text { Graph: } y=\frac{-4.8}{2.3} x+\frac{3.7}{2.3}
\end{aligned}
$$

The boundary is part of the graph.

11. Nina takes her friends to an ice cream store. A milkshake costs $\$ 3$ and a chocolate sundae costs $\$ 2.50$. Nina has $\$ 18$ in her purse.
a) Write an inequality to describe how Nina can spend her money.

Let m represent the number of milkshakes and s represent the number of sundaes.
An inequality is: $3 m+2.5 s \leq 18$
b) Determine 3 possible ways Nina can spend up to $\$ 18$.

Determine the coordinates of 2 points that
satisfy the related function.
When $s=0, m=6$
When $s=6, m=1$
Join the points with a solid line.
The solution is the points, with whole-number coordinates, on and below the line.

Three ways are: 4 milkshakes, 2 sundaes; 3 milkshakes, 3 sundaes;
2 milkshakes, 4 sundaes
c) What is the most money Nina can spend and still have change from \$18?

The point, with whole-number coordinates, that is closest to the line has coordinates $(5,1)$; the cost, in dollars, is:
$(5)(3)+1(2.50)=17.50$
Nina can spend $\$ 17.50$ and still have change.
12. The relationship between two negative numbers p and q is described by the inequality $p-2 q>-6$.
a) What are the restrictions on the variables?

Since the numbers are negative, $p<0$ and $q<0$
b) Graph the inequality.

Determine the coordinates of 2 points that satisfy the related function.
When $p=-10, q=-2$
When $p=-6, q=0$

Draw a broken line through the points.
The solution is the points below the line in Quadrant 3.
c) Write the coordinates of 2 points that satisfy the inequality.

Sample response: Two points are: $(-4,-4)$ and $(-12,-4)$
13. Graph each inequality for the given restrictions on the variables.
a) $y>-3 x+4$; for $x>0, y>0$

Since $x>0, y>0$, the graph is in Quadrant 1.
The graph of the related function has slope -3 and y-intercept 4.
Draw a broken line to represent the related function in Quadrant 1.
Shade the region above the line.
The axes bounding the graph are broken lines.
b) $2 x-3 y<6$; for $x \geq 0, y \leq 0$

Since $x \geq 0, y \leq 0$, the graph is in Quadrant 4.
Graph the related function.
When $y=0, x=3$
When $x=0, y=-2$
Draw a broken line in Quadrant 4.
Use $(0,0)$ as a test point.
L.S. $=0 ;$ R.S. $=6$

Since $0<6$, the origin lies in the shaded region.
Shade the region above the line.
c) $4 x+5 y-20>0$; for $x \leq 0, y \geq 0$

Since $x \leq 0, y \geq 0$, the graph is in Quadrant 2.
Graph the related function.
When $x=0, y=4$
When $x=-5, y=8$
Draw a broken line in Quadrant 2.
Use $(0,0)$ as a test point.
L.S. $=-20 ;$ R.S. $=0$

Since $-20<0$, the origin does not lie in the shaded region.
Shade the region above the line.
14. a) For $A(9, a)$ to be a solution of $3 x-2 y<5$, what must be true about a ?

Substitute the coordinates of A in the inequality.
$3(9)-2(a)<5 \quad$ Solve for a.

$$
\begin{aligned}
2 a & >22 \\
a & >11
\end{aligned}
$$

b) For $\mathrm{B}(b,-3)$ to be a solution of $3 x+4 y \geq-12$, what must be true about b ?

Substitute the coordinates of B in the inequality.
$3(b)+4(-3) \geq-12$ Solve for b.

$$
\begin{aligned}
3 b & \geq 0 \\
b & \geq 0
\end{aligned}
$$

15. A personal trainer books clients for either $45-\mathrm{min}$ or $60-\mathrm{min}$ appointments. He meets with clients a maximum of 40 h each week.
a) Write an inequality that represents the trainer's weekly appointments.
Let x represent the number of $45-\mathrm{min}$ appointments and y represent the number of $60-\mathrm{min}$ appointments.
An inequality is: $45 x+60 y \leq 2400$
Divide by 15 .
$3 x+4 y \leq 160$
b) Graph the related equation, then describe the graph of the inequality.

Determine the coordinates of 2 points that
satisfy the related function.
When $x=0, y=40$
When $x=20, y=25$
Join the points with a solid line.
The solution is the points, with whole-number coordinates, on and below the line.

c) How many $45-\mathrm{min}$ appointments are possible if no 60 -min appointments are scheduled? Where is the point that represents this situation located on the graph?

For no $60-\mathrm{min}$ appointments, $y=0$, so the point is on the x-axis; it is the point with whole-number coordinates that is closest to the x-intercept of the graph of the related equation. When $y=0$,
$x=\frac{2400}{45}$, or $53 . \overline{3}$
Fifty-three 45 -min appointments are possible.
16. Graph this inequality. Identify the strategy you used and explain why you chose that strategy.
$\frac{x}{3}+\frac{y}{2} \geq 1$
Graph the related function.
Determine the intercepts.
When $y=0, x=3$
When $x=0, y=2$
Draw a solid line.
Use (0,0) as a test point.
L.S. $=0$; R.S. $=1$

Since $0<1$, the origin is not in the shaded region.
Shade the region above the line.

C
17. How is a linear inequality in two variables similar to a linear inequality in one variable? How are the inequalities different?

The solutions of both inequalities are usually sets of values. A linear inequality in one variable is a set of numbers that can be represented on a number line. A linear inequality in two variables is a set of ordered pairs that can be represented on a coordinate plane.

