Lesson 5.5 Exercises, pages 397-404

A

3. Determine whether each ordered pair is a solution of the system of equations.
a) $y=-x^{2}+10$
$x-y=2$ $(3,1)$
b) $y=x^{2}+3 x-4$
$y=2 x^{2}-5 x+2$ (2) $(2,6)$
Substitute: $x=3, y=1$ in: Substitute: $x=2, y=6 \mathrm{in}$:
Equation (1): L.S. $=1$; R.S. $=1 \quad$ Equation (1): L.S. $=6$, R.S. $=6$
Equation (2): L.S. $=2$, R.S. $=2 \quad$ Equation (2): L.S. $=6$, R.S. $=0$
The ordered pair is The ordered pair is not a solution. a solution.
4. Two numbers are related:

The sum of the first number and the square of a second number is 18 . The difference between the square of the second number and twice the first number is 12 .
Which system below models this relationship?
a) $(x+y)^{2}=18$
b) $x+y^{2}=18$
c) $x+2 y=18$
$x^{2}-2 y=12$
$y^{2}-2 x=12$
$2 y-x^{2}=18$

The first statement is modelled by $x+y^{2}=18$.
The second statement is modelled by $y^{2}-2 x=12$.
So, the system in part b is correct.

B
5. Solve each linear-quadratic system algebraically.
a) $y=x+4$
$y=x^{2}+x$ (2)
From equation (1), substitute $y=x+4$ in equation (2).
$x+4=x^{2}+x$
$x^{2}=4$
So, $x=-2$ or $x=2$
Substitute each value of x in equation (1).
When $x=-2$: \quad When $x=2$:
$y=-2+4 \quad y=2+4$
$y=2 \quad y=6$
The solutions are: $(-2,2)$ and $(2,6)$
Substitute each solution in each equation to verify.
b) $y=-x+5$
$y=(x+1)^{2}$ (2)
From equation (1), substitute $y=-x+5$ in equation (2).

$$
\begin{aligned}
-x+5 & =(x+1)^{2} \\
-x+5 & =x^{2}+2 x+1 \\
x^{2}+3 x-4 & =0 \\
(x+4)(x-1) & =0 \\
\text { So, } x=-4 \text { or } x & =1
\end{aligned}
$$

Substitute each value of x in equation (1).
When $x=-4$:
When $x=1$:
$y=-(-4)+5$
$y=-1+5$
$y=9$
$y=4$
The solutions are: $(-4,9)$ and $(1,4)$
Substitute each solution in each equation to verify.
c) $y=3 x-2$
$y=x^{2}+4 x-2$ (2)
From equation (1), substitute $y=3 x-2$ in equation (2).
$3 x-2=x^{2}+4 x-2$
$x^{2}+x=0$
$x(x+1)=0$
So, $x=0$ or $x=-1$
Substitute each value of x in equation (1).
When $x=0$: \quad When $x=-1$:
$y=3(0)-2 \quad y=3(-1)-2$
$y=-2 \quad y=-5$
The solutions are: $(0,-2)$ and $(-1,-5)$
Substitute each solution in each equation to verify.
6. Two numbers are related:

The first number minus 12 is equal to the second number.
The square of the first number minus 30 times the second number is equal to 360 .
a) Create a system of equations to represent this relationship.

Let the numbers be represented by x and y respectively.
A system is:
$x-12=y$ (1)
$x^{2}-30 y=360$ (2)
b) Solve the system to determine the numbers.

From equation (1), substitute $y=x-12$ in equation (2).

$$
\begin{aligned}
x^{2}-30(x-12) & =360 \\
x^{2}-30 x & =0 \\
x(x-30) & =0
\end{aligned}
$$

So, $x=0$ or $x=30$
Substitute each value of x in equation (1).

$$
\begin{aligned}
\text { When } x & =0: & & \text { When } x
\end{aligned}=30: ~ \begin{array}{rlrl}
0-12 & =y & 30-12 & =y \\
y & =-12 & y & =18
\end{array}
$$

The numbers are: 0 and -12 ; or 30 and 18
Substitute each pair of numbers in the problem statements to verify.
7. Solve each quadratic-quadratic system algebraically. Verify each solution using graphing technology.
a) $y=x^{2}+4$
$y=-x^{2}+12$ (2)
From equation (1), substitute $y=x^{2}+4$ in equation (2).

$$
\begin{aligned}
x^{2}+4 & =-x^{2}+12 \\
2 x^{2} & =8 \\
x^{2} & =4
\end{aligned}
$$

So, $x=-2$ or $x=2$
Substitute each value of x in equation (1).

When $x=-2:$	When $x=2:$
$y=(-2)^{2}+4$	$y=2^{2}+4$
$y=8$	$y=8$

The solutions are: $(-2,8)$ and $(2,8)$
b) $y=2(x+4)^{2}$ (1)
$y=\frac{1}{2}(x+1)^{2}$
From equation (1), substitute $y=2(x+4)^{2}$ in equation (2).

$$
\begin{aligned}
2(x+4)^{2} & =\frac{1}{2}(x+1)^{2} \\
4(x+4)^{2} & =(x+1)^{2} \\
4 x^{2}+32 x+64 & =x^{2}+2 x+1 \\
3 x^{2}+30 x+63 & =0 \\
x^{2}+10 x+21 & =0 \\
(x+3)(x+7) & =0
\end{aligned}
$$

So, $x=-3$ or $x=-7$
Substitute each value of x in equation (1).
When $x=-3$:
When $x=-7$:
$y=2(-3+4)^{2}$
$y=2(-7+4)^{2}$
$y=2$
$y=18$

The solutions are: $(-3,2)$ and $(-7,18)$
c) $y=2 x^{2}+12 x+18$
$y=-(x+3)^{2}+12$
From equation (1), substitute $y=2 x^{2}+12 x+18$ in equation (2).
$2 x^{2}+12 x+18=-(x+3)^{2}+12$
$2 x^{2}+12 x+18=-x^{2}-6 x-9+12$
$3 x^{2}+18 x+15=0$
$x^{2}+6 x+5=0$
$(x+5)(x+1)=0$
So, $x=-5$ or $x=-1$
Substitute each value of x in equation (1).
When $x=-5$: \quad When $x=-1$:
$y=2(-5)^{2}+12(-5)+18 \quad y=2(-1)^{2}+12(-1)+18$
$y=8 \quad y=8$
The solutions are: $(-5,8)$ and $(-1,8)$
Substitute each solution in each equation to verify.
8. Solve each linear-quadratic system algebraically. Verify each solution using graphing technology.
a) $y=-2 x^{2}+1$
$4 x+3 y=12$
From equation (1), substitute $y=-2 x^{2}+1$ in equation (2).
$4 x+3\left(-2 x^{2}+1\right)=12$

$$
4 x-6 x^{2}-9=0
$$

$$
6 x^{2}-4 x+9=0
$$

Use the quadratic formula.
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ Substitute: $a=6, b=-4, c=9$
$x=\frac{4 \pm \sqrt{(-4)^{2}-4(6)(9)}}{2(6)}$
$x=\frac{4 \pm \sqrt{-200}}{12}$
Since the discriminant is negative, there are no real solutions.
b) $\begin{aligned} & y=x^{2}-3 x+2 \\ & 4 x-4 y=7\end{aligned}$

From equation (1), substitute $y=x^{2}-3 x+2$ in equation (2).
$4 x-4\left(x^{2}-3 x+2\right)=7$
$4 x-4 x^{2}+12 x-8=7$
$4 x^{2}-16 x+15=0$
$(2 x-5)(2 x-3)=0$
So, $x=2.5$ or $x=1.5$
Substitute each value of x in equation (1).
When $x=2.5: \quad$ When $x=1.5$:
$y=(2.5)^{2}-3(2.5)+2 \quad y=(1.5)^{2}-3(1.5)+2$
$y=0.75 \quad y=-0.25$
The solutions are: $(2.5,0.75)$ and $(1.5,-0.25)$
9. Solve each quadratic-quadratic system algebraically. Use the quadratic formula when necessary.
a) $y=2 x^{2}-7 x+3$
$y=\frac{2}{3}(x-1)^{2}+1$

From equation (1), substitute $y=2 x^{2}-7 x+3$ in equation (2).

$$
\begin{aligned}
& \qquad \begin{array}{l}
2 x^{2}-7 x+3=\frac{2}{3}(x-1)^{2}+1 \\
6 x^{2}-21 x+9=2 x^{2}-4 x+2+3 \\
4 x^{2}-17 x+4=0
\end{array} \\
& \begin{array}{ll}
(x-4)(4 x-1)=0 \\
\text { So, } x=4 \text { or } x=0.25
\end{array} \\
& \text { Substitute each value of } x \text { in equation }(1) \\
& \text { When } x=4: \\
& \begin{array}{ll}
y=2(4)^{2}-7(4)+3 & y=2(0.25)^{2}-7(0.25)+3 \\
y=7 & y=1.375
\end{array}
\end{aligned}
$$

The solutions are: $(4,7)$ and $(0.25,1.375)$
b) $y=x^{2}+8 x+15$
$y=-2 x^{2}-16 x+33$ (2)

From equation (1), substitute $y=x^{2}+8 x+15$ in equation (2).

$$
\begin{aligned}
x^{2}+8 x+15 & =-2 x^{2}-16 x+33 \\
3 x^{2}+24 x-18 & =0 \\
x^{2}+8 x-6 & =0
\end{aligned}
$$

Use the quadratic formula.
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad$ Substitute: $a=1, b=8, c=-6$
$x=\frac{-8 \pm \sqrt{8^{2}-4(1)(-6)}}{2(1)}$
$x=\frac{-8 \pm \sqrt{88}}{2}$
$x=-4 \pm \sqrt{22}$
Substitute each value of x in equation (1).
When $x=-4+\sqrt{22}$:
$y=(-4+\sqrt{22})^{2}+8(-4+\sqrt{22})+15$
$y=16-8 \sqrt{22}+22-32+8 \sqrt{22}+15$
$y=21$
When $x=-4-\sqrt{22}$:
$y=(-4-\sqrt{22})^{2}+8(-4-\sqrt{22})+15$
$y=16+8 \sqrt{22}+22-32-8 \sqrt{22}+15$
$y=21$
The solutions are: $(-4+\sqrt{22}, 21)$ and $(-4-\sqrt{22}, 21)$
c) $y=-2(x+4)^{2}-5$
$y=-2 x^{2}-16 x-37$
From equation (1), substitute $y=-2(x+4)^{2}-5$ in equation (2).

$$
\begin{aligned}
-2(x+4)^{2}-5 & =-2 x^{2}-16 x-37 \\
-2 x^{2}-16 x-37 & =-2 x^{2}-16 x-37
\end{aligned}
$$

Since the left side is equal to the right side for all values of x, there are infinite solutions.
d) $y=x^{2}+3 x-2$
$y=-x^{2}+4 x-3$
From equation (1), substitute $y=x^{2}+3 x-2$ in equation (2).
$x^{2}+3 x-2=-x^{2}+4 x-3$
$2 x^{2}-x+1=0$
Use the quadratic formula.
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad$ Substitute: $a=2, b=-1, c=1$
$x=\frac{1 \pm \sqrt{(-1)^{2}-4(2)(1)}}{2(1)}$
$x=\frac{1 \pm \sqrt{-7}}{2}$
Since the discriminant is negative, there are no real solutions.
10. Two numbers are related in this way:

The number 1 is subtracted from the first number, the difference is squared, then doubled; the result is equal to the second number.
The number 1 is added to the first number, and the sum is squared; the result is equal to 4 minus the second number.
Determine the numbers. Explain the strategy you used.
Let the numbers be represented by x and y respectively.
A system is:

$$
\begin{aligned}
& 2(x-1)^{2}=y \\
& (x+1)^{2}=4-y
\end{aligned}
$$

From equation (1), substitute $y=2(x-1)^{2}$ in equation (2).

$$
\begin{aligned}
(x+1)^{2} & =4-2(x-1)^{2} \\
x^{2}+2 x+1 & =4-2 x^{2}+4 x-2 \\
3 x^{2}-2 x-1 & =0 \\
(x-1)(3 x+1) & =0 \\
\text { So, } x=1 \text { or } x & =-\frac{1}{3}
\end{aligned}
$$

Substitute each value of x in equation (1).

$$
\begin{array}{rr}
\text { When } x=1: & \text { When } x=-\frac{1}{3} \\
2(1-1)^{2}=y & 2\left(-\frac{1}{3}-1\right)^{2}=y \\
y=0 & y=\frac{32}{9}
\end{array}
$$

The numbers are: 1 and 0 ; or $-\frac{1}{3}$ and $\frac{32}{9}$
11. An emergency flare is propelled into the sky from a spot on the ground. The path of the flare is modelled by the equation $y=-0.096(x-25)^{2}+60$, where y metres is the height of the flare when its horizontal distance from where it was propelled is x metres. A telescope is placed at the spot from which the flare was propelled. The line of sight from the telescope is modelled by the equation $8 x-10 y=-15$.
a) Solve the system formed by the two equations. Give the answers to the nearest tenth of a unit.

$$
\begin{aligned}
& y=-0.096(x-25)^{2}+60 \\
& 8 x-10 y=-15
\end{aligned}
$$

From equation (1), substitute $y=-0.096(x-25)^{2}+60$ in equation (2).

$$
\begin{aligned}
8 x-10\left(-0.096(x-25)^{2}+60\right) & =-15 \\
8 x+0.96 x^{2}-48 x+600-600+15 & =0 \\
0.96 x^{2}-40 x+15 & =0
\end{aligned}
$$

Use the quadratic formula.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \text { Substitute: } a=0.96, b=-40, c=15 \\
& x=\frac{40 \pm \sqrt{(-40)^{2}-4(0.96)(15)}}{2(0.96)} \\
& x=\frac{40 \pm \sqrt{1542.4}}{1.92} \\
& x=41.2882 \ldots \text { or } x=0.3784 \ldots \\
& \text { Substitute each value of } x \text { in equation (2. } \\
& \text { When } x=41.2882 \ldots \\
& 8(41.2882 \ldots)-10 y=-15 \\
& \qquad \begin{aligned}
10 y & =345.3058 \ldots \\
\qquad y & =34.5305 \ldots
\end{aligned} \\
& \begin{aligned}
& \text { When } x=0.3784 \ldots \\
& 8(0.3784 \ldots)-10 y=-15 \\
& 10 y=18.0274 \ldots
\end{aligned} \\
& \qquad y=1.8027 \ldots
\end{aligned}
$$

The solutions are approximately: $(41.3,34.5)$ and $(0.4,1.8)$
b) Explain the meaning of the solution of the system.

The flare is seen through the telescope when the flare has travelled approximately 0.4 m horizontally and 1.8 m vertically; and when the flare has travelled approximately 41.3 m horizontally and 34.5 m vertically.
12. After a football is kicked, it reaches a maximum height of 14 m and it hits the ground 32 m from where it was kicked. After a soccer ball is kicked, it reaches a maximum height of 8 m and it hits the ground 38 m from where it was kicked. The paths of both balls are parabolas.
a) Create an equation that represents the path of the football.

Let $(0,0)$ represent the initial position of the ball.
Visualize a coordinate grid. Assume the football was on the ground when it was kicked. So, the parabola has x-intercepts of 0 and 32. The x-coordinate of its maximum point is 16 , so its vertex has coordinates (16, 14).
The equation of the parabola has the form:

$$
\begin{aligned}
y & =a x(x-32) \quad \text { Substitute: } x=16, y=14 \\
14 & =a(16)(16-32) \\
a & =-\frac{7}{128}
\end{aligned}
$$

An equation is: $y=-\frac{7}{128} x(x-32)$
b) Create an equation that represents the path of the soccer ball.

Let $(0,0)$ represent the initial position of the ball.
Visualize a coordinate grid. Assume the soccer ball was on the ground when it was kicked. So, the parabola has x-intercepts of 0 and 38 .
The x-coordinate of its maximum point is 19 , so its vertex has coordinates $(19,8)$.
The equation of the parabola has the form:
$y=a x(x-38)$ Substitute: $x=19, y=8$
$8=a(19)(19-38)$
$a=-\frac{8}{361}$
An equation is: $y=-\frac{8}{361} x(x-38)$
c) To the nearest tenth of a metre, determine the horizontal distance that both balls have travelled when they reach the same height.

Solve the system formed by the equations in parts a and b .
$y=-\frac{7}{128} x(x-32)$
$y=-\frac{8}{361} x(x-38)$ (2)
From equation (1), substitute $y=-\frac{7}{128} x(x-32)$ in equation (2).

$$
\begin{aligned}
&-\frac{7}{128} x(x-32)=-\frac{8}{361} x(x-38) \\
& 361(7) x(x-32)=128(8) x(x-38) \\
& 2527 x^{2}-80864 x=1024 x^{2}-38912 x \\
& x(1503 x-41952)=0 \\
& x=0 \text { or } x=27.9121 \ldots
\end{aligned}
$$

So, the balls have travelled approximately 27.9 m horizontally when they reach the same height.

