1. Multiple Choice Which inequality is not represented by this graph?

A. $y > x^2 - x - 6$	2 1
B. $y > \left(x - \frac{1}{2}\right)^2 - \frac{25}{4}$	
C. $y > (x + 2)(x - 3)$	
D $y > (x + 3)(x - 2)$	-4-//
	-6

2. Multiple Choice Which inequality below is represented by this number line?

-6	-5	-4	-3	-2	-1	0	$\frac{1}{2}$ 1	2
$(\mathbf{A}) 2x^2$	+7x	- 4 ≥	2 0	I	3. $2x^2$ -	+ 7 <i>x</i>	- 4 <	<u> </u>
C. −2	$x^2 - 7$	x + 4	≥ 0	I	D. $2x^2$ -	- 7 <i>x</i>	+ 4 ≤	<u> 0</u>

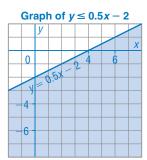
3. Graph each inequality. Give 2 possible solutions in each case.

a)
$$2x^2 - 5x < -2$$

Solve: $2x^2 - 5x + 2 = 0$
 $(2x - 1)(x - 2) = 0$
 $x = 0.5$ or $x = 2$
When $x < 0.5$, such as $x = 0$, L.S. = 0; R.S. = -2;
so $x = 0$ does not satisfy the inequality.
When $0.5 < x < 2$, such as $x = 1$, L.S. = -3; R.S. = -2;
so $x = 1$ does satisfy the inequality.
The solution is: $0.5 < x < 2$, $x \in \mathbb{R}$
Two possible solutions are: $x = 1$ and $x = 1.5$

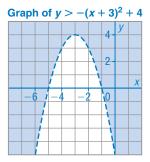
b) $-2 \ge -0.5(x-6)^2$ Solve: $-2 = -0.5(x-6)^2$ $(x-6)^2 = 4$ $x-6 = \pm 2$ x = 4 or x = 8When $x \le 4$, such as x = 0, L.S. = -2; R.S. = -18; so x = 0 does satisfy the inequality. When $x \ge 8$, such as x = 10, L.S. = -2; R.S. = -8; so x = 10 does satisfy the inequality. The solution is: $x \le 4$ or $x \ge 8$, $x \in \mathbb{R}$ Two possible solutions are: x = 1 and x = 20

c)
$$y \le 0.5x - 2$$



d) $y > -(x + 3)^2 + 4$

The parabola is congruent to $y = -x^2$ and has vertex (-3, 4). Draw a broken curve. Shade the region above the curve.

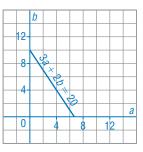


- **4.** At a school cafeteria, an apple costs 75¢ and a banana costs 50¢. Ava has up to \$5 to spend on fruit for herself and her friends.
 - **a**) Write an inequality to represent this situation. What are the restrictions on the variables?

Let *a* represent the number of apples and *b* represent the number of bananas. An inequality is: $75a + 50b \le 500$, or $3a + 2b \le 20$ Both *a* and *b* are whole numbers.

b) Determine 2 possible ways that Ava can spend up to \$5.

Determine the coordinates of 2 points that satisfy the related function. When a = 0, b = 10When a = 6, b = 1Join the points with a solid line. The solution is the points, with whole-number coordinates, on and below the line. Two ways are: 4 apples, 2 bananas; 2 apples, 6 bananas



5. Solve each system of equations. Use algebra for one system and graphing technology for the other. How did you decide which strategy to use?

a)
$$y = 2x^2 + x - 1$$
 ①
 $x + y = 12$ ②
Rearrange equation ②.
 $y = 12 - x$
Substitute $y = 12 - x$ in equation ①.
 $12 - x = 2x^2 + x - 1$
 $2x^2 + 2x - 13 = 0$
This equation does not factor, so I use graphing technology. I use algebra when the equation does factor.
Input the equations. To the nearest tenth, the graphs intersect at these points: $(-3, 1, 15, 1)$ and $(2, 1, 9, 9)$

b) $y = (x - 2)^2$ $y = -x^2 + 4x - 4$ From equation (), substitute $y = (x - 2)^2$ in equation (). $(x - 2)^2 = -x^2 + 4x - 4$ $x^2 - 4x + 4 = -x^2 + 4x - 4$ $2x^2 - 8x + 8 = 0$ $x^2 - 4x + 4 = 0$ $(x - 2)^2 = 0$ So, x = 2Substitute x = 2 in equation (). $y = (2 - 2)^2$ y = 0The solution is: (2, 0)

6. The cross section of a pedestrian tunnel under a road is parabolic and is modelled by the equation $y = -0.3x^2 + 1.8x$, where y metres is the height of the tunnel at a distance of x metres measured horizontally from one edge of the path under the tunnel. In 2010, the tallest living person was about 2.56 m tall. Could he walk through the tunnel without having to bend over? How could you use an inequality to solve this problem?

Determine the values of x for which $y \ge 2.56$. Solve: $-0.3x^2 + 1.8x \ge 2.56$, or $-0.3x^2 + 1.8x - 2.56 \ge 0$ Use graphing technology. Input: $y = -0.3x^2 + 1.8x - 2.56$ Determine if there are any values of x for which $y \ge 0$; these values are approximately $2.3 \le x \le 3.7$. So, the tallest living person could walk through the tunnel.