Lesson 6.3 Math Lab: Assess Your Understanding, pages 468-469

- **1.** In \triangle ABC, AB = 4 cm and \angle A = 70°
 - a) Sketch a diagram to show that there are two triangles with BC = 3.8 cm.

Ø

Ø

Ø

b) To the nearest degree, measure $\angle C$ for each triangle.

 $\angle C = 98^\circ \text{ or } 82^\circ$

c) To the nearest hundredth of a centimetre, calculate the length of BC for which ΔABC is a right triangle.

```
If \triangle ABC is a right triangle, then

\sin A = \frac{BC}{AB}

\sin 70^{\circ} = \frac{BC}{4}

BC = 4 \sin 70^{\circ}

BC = 3.7587...

To the nearest hundredth of a centimetre, BC = 3.76 cm
```

2. In $\triangle ABC$, AB = 4 cm, BC = 3.5 cm, and $\angle A = 70^{\circ}$ Use the completed chart in Part D to justify that it is not possible to draw a triangle.

$$\frac{BC}{AB} = \frac{3.5}{4}, \text{ or } 0.875$$

sin 70° $\doteq 0.940$
Since $\frac{BC}{AB} < \sin 70^\circ$, then no triangle is possible

- **3.** In \triangle ABC, AB = 4 cm and \angle A = 70°
 - **a**) Choose a value for BC for which a unique triangle that is not a right triangle can be drawn. Draw the triangle.

b) Use the completed chart in Part D to justify that only one scalene triangle can be drawn with the value you chose for BC.

```
Sample response: I chose BC = 5 cm.

\frac{BC}{AB} = \frac{5}{4} = 1.25
Since \frac{BC}{AB} > 1, then only one triangle is possible
```

4. In \triangle ABC, AB = 10 cm and BC = 8 cm; to the nearest degree, determine possible measures of acute \angle A for each situation.

a) No triangle is possible.

 $\angle A$ is acute, so $\angle A < 90^{\circ}$ For no triangle, sin $A > \frac{8}{10}$, or 0.8 sin⁻¹(0.8) \doteq 53° For an acute angle θ , as θ increases, sin θ also increases. So, for no triangle, 53° $< \angle A < 90^{\circ}$

b) One right triangle is possible.

For a right triangle, $\frac{BC}{AB} = \sin A$ So, sin A = 0.8 From part a, $\angle A \doteq 53^{\circ}$; so, for one right triangle, $\angle A \doteq 53^{\circ}$

c) Two scalene triangles are possible.

Ø

Ø

в

Ø

For two scalene triangles, sin A $< \frac{BC}{AB} < 1$ $\frac{BC}{AB} = 0.8$, so sin A < 0.8From part a, $\angle A < 53^{\circ}$; so, for two scalene triangles, $\angle A < 53^{\circ}$ C