Lesson 6.3 Math Lab: Assess Your Understanding, pages 468-469

1. In $\triangle \mathrm{ABC}, \mathrm{AB}=4 \mathrm{~cm}$ and $\angle \mathrm{A}=70^{\circ}$
a) Sketch a diagram to show that there are two triangles with $\mathrm{BC}=3.8 \mathrm{~cm}$.

b) To the nearest degree, measure $\angle \mathrm{C}$ for each triangle.
$\angle \mathrm{C}=98^{\circ}$ or 82°
c) To the nearest hundredth of a centimetre, calculate the length of $B C$ for which $\triangle A B C$ is a right triangle.

$$
\begin{aligned}
& \text { If } \triangle A B C \text { is a right triangle, then } \\
& \sin A=\frac{B C}{A B} \\
& \sin 70^{\circ}=\frac{B C}{4} \\
& B C=4 \sin 70^{\circ} \\
& B C=3.7587 \ldots
\end{aligned}
$$

To the nearest hundredth of a centimetre, $\mathrm{BC}=3.76 \mathrm{~cm}$
2. In $\triangle \mathrm{ABC}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=3.5 \mathrm{~cm}$, and $\angle \mathrm{A}=70^{\circ}$

Use the completed chart in Part D to justify that it is not possible to draw a triangle.
$\frac{B C}{A B}=\frac{3.5}{4}$, or 0.875
$\sin 70^{\circ} \doteq 0.940$
Since $\frac{B C}{A B}<\sin 70^{\circ}$, then no triangle is possible
3. In $\triangle \mathrm{ABC}, \mathrm{AB}=4 \mathrm{~cm}$ and $\angle \mathrm{A}=70^{\circ}$
a) Choose a value for BC for which a unique triangle that is not a right triangle can be drawn. Draw the triangle.

Sample response:

b) Use the completed chart in Part D to justify that only one scalene triangle can be drawn with the value you chose for BC.

Sample response: I chose $B C=5 \mathrm{~cm}$.

$$
\begin{aligned}
& \frac{B C}{A B}=\frac{5}{4}=1.25 \\
& \text { Since } \frac{B C}{A B}>1 \text {, then only one triangle is possible }
\end{aligned}
$$

4. In $\triangle \mathrm{ABC}, \mathrm{AB}=10 \mathrm{~cm}$ and $\mathrm{BC}=8 \mathrm{~cm}$; to the nearest degree, determine possible measures of acute $\angle \mathrm{A}$ for each situation.
a) No triangle is possible.
$\angle \mathrm{A}$ is acute, so $\angle \mathrm{A}<90^{\circ}$
For no triangle, $\sin \mathrm{A}>\frac{8}{10}$, or 0.8
$\sin ^{-1}(0.8) \doteq 53^{\circ}$
For an acute angle $\boldsymbol{\theta}$, as $\boldsymbol{\theta}$ increases, $\sin \boldsymbol{\theta}$ also increases.
So, for no triangle, $53^{\circ}<\angle \mathrm{A}<90^{\circ}$
b) One right triangle is possible.

For a right triangle, $\frac{B C}{A B}=\sin A$
So, $\sin \mathrm{A}=0.8$
From part a, $\angle \mathrm{A} \doteq 53^{\circ}$; so, for one right triangle, $\angle \mathrm{A} \doteq 53^{\circ}$
c) Two scalene triangles are possible.

```
For two scalene triangles, \(\sin \mathrm{A}<\frac{\mathrm{BC}}{\mathrm{AB}}<1\)
\(\frac{B C}{A B}=0.8, \operatorname{so} \sin A<0.8\)
From part a, \(\angle \mathrm{A}<53^{\circ}\); so, for two scalene triangles, \(\angle \mathrm{A}<53^{\circ}\)
```

