## Lesson 7.5 Exercises, pages 583-590

A
3. Identify the non-permissible values of the variable in each equation.
a) $5=\frac{3 x}{x}$
$x=0$
b) $\frac{2}{x-1}=\frac{6}{x}$
$x=0$ and $x=1$
c) $\frac{3}{6-x}=\frac{2}{x+5}$
d) $\frac{-1}{3 x+6}=\frac{2 x}{x-2}$
$x=-5$ and $x=6$
$x=-2$ and $x=2$
4. Solve each equation.
a) $\frac{4}{5}=\frac{8}{d}$
b) $\frac{e}{3}=\frac{12}{e}$
Non-permissible value: $d=0$
Non-permissible value: $e=0$
Common denominator: 5d

$$
\begin{aligned}
5 d\left(\frac{4}{5}\right) & =5 d\left(\frac{8}{e t}\right) \\
4 d & =40 \\
d & =10
\end{aligned}
$$

Common denominator: $3 e$

$$
\begin{aligned}
3 e\left(\frac{e}{z}\right) & =3 e\left(\frac{12}{e^{\prime}}\right) \\
e^{2} & =36 \\
e & =6 \text { or } e=-6
\end{aligned}
$$

Solutions are $e=-6$ and $e=6$.
5. Solve each equation.
a) $\frac{3}{2 z}=\frac{4}{3 z}-\frac{1}{2}$
b) $2-\frac{4}{x}=\frac{6}{x^{2}}$

Non-permissible value: $z=0$
Common denominator: $6 z$

$$
\begin{aligned}
{ }^{3} 6 z\left(\frac{3}{2 I}\right) & ={ }^{2} 6 z\left(\frac{4}{3 I}\right)-{ }^{3} 6 z\left(\frac{1}{z Z}\right) \\
9 & =8-3 z \\
3 z & =-1 \\
z & =-\frac{1}{3}
\end{aligned}
$$

Non-permissible value: $x=0$
Common denominator: $x^{2}$
$x^{2}(2)-x^{2 x}\left(\frac{4}{x}\right)=x^{2}\left(\frac{6}{x^{2}}\right)$

$$
2 x^{2}-4 x=6
$$

$$
2 x^{2}-4 x-6=0
$$

$$
2\left(x^{2}-2 x-3\right)=0
$$

$$
2(x-3)(x+1)=0
$$

$$
x=3 \text { or } x=-1
$$

Solutions are $x=-1$ and $x=3$.
6. Solve each equation.
a) $\frac{3}{q-2}=\frac{5}{q+4}$

Non-permissible values: $q=2$ and $q=-4$
Common denominator: $(q-2)(q+4)$

$$
\begin{aligned}
(q-2)(q+4)\left(\frac{3}{-q-2}\right) & =(q-2)(q+4)\left(\frac{5}{q+4}\right) \\
3 q+12 & =5 q-10 \\
22 & =2 q \\
q & =11
\end{aligned}
$$

b) $\frac{3}{2 s-4}=\frac{3}{s-2}$

Non-permissible value: $s=2$
The numerators are the same, so equate the denominators.
$2 s-4=s-2$
$s=2$
$s=2$ is a non-permissible value, so the equation has no solution.
7. Solve each equation.
a) $\frac{a-1}{a-3}=\frac{a+1}{a-4}$

Non-permissible values: $a=3$ and $a=4$
Common denominator: $(a-3)(a-4)$

$$
\begin{aligned}
(a-3)(a-4)\left(\frac{a-1}{a-3}\right) & =(a-3)(a-4)\left(\frac{a+1}{a-4}\right) \\
(a-4)(a-1) & =(a-3)(a+1) \\
a^{2}-5 a+4 & =a^{2}-2 a-3 \\
-3 a & =-7 \\
a & =\frac{7}{3}
\end{aligned}
$$

b) $\frac{2 w+1}{w-4}=\frac{4 w-3}{2 w+1}$ Non-permissible values: $w=4$ and $w=-\frac{1}{2}$
Common denominator: $(w-4)(2 w+1)$

$$
\begin{aligned}
(w-4)(2 w+1)\left(\frac{2 w+1}{w-4}\right) & =(w-4)(2 w+1)\left(\frac{4 w-3}{2 w-1}\right) \\
(2 w+1)(2 w+1) & =(w-4)(4 w-3) \\
4 w^{2}+4 w+1 & =4 w^{2}-19 w+12 \\
23 w & =11 \\
w & =\frac{11}{23}
\end{aligned}
$$

c) $\frac{6}{2 x^{2}+2 x}=\frac{x-2}{x+1}$

$$
\frac{6}{2 x(x+1)}=\frac{x-2}{x+1}
$$

Non-permissible values: $x=-1$ and $x=0$
Common denominator: $2 x(x+1)$

$$
\begin{aligned}
2 x(x+1)\left(\frac{6}{2 x(x-1)}\right) & =2 x(x+1)\left(\frac{x-2}{x+1}\right) \\
6 & =2 x^{2}-4 x \\
2 x^{2}-4 x-6 & =0 \\
2\left(x^{2}-2 x-3\right) & =0 \\
2(x-3)(x+1) & =0 \\
x & =3 \text { or } x=-1
\end{aligned}
$$

$x=-1$ is a non-permissible value.
So, the only solution is $x=3$.
8. Here is a student's solution for solving a rational equation. Identify the error in the solution. Write a correct solution.

$$
\begin{aligned}
\frac{1}{8} & =1+\frac{2}{x} \\
\frac{1}{8} & =\frac{3}{x} \\
8 \times\left(\frac{1}{8}\right) & =8 \times\left(\frac{3}{x}\right) \\
x & =24
\end{aligned}
$$

There is an error in line 2: the student added $1+\frac{2}{x}$ without using a common denominator. Correct solution:
Non-permissible value: $x=0$
Common denominator: $8 x$

$$
\begin{aligned}
\frac{1}{8} & =1+\frac{2}{x} \\
\frac{1}{8} & =\frac{x+2}{x} \\
8 \times\left(\frac{1}{8}\right) & =8 x\left(\frac{x+2}{x}\right) \\
x & =8 x+16 \\
7 x & =-16 \\
x & =-\frac{16}{7}
\end{aligned}
$$

9. Solve each equation.
a) $\frac{1}{x}+\frac{1}{x-3}=\frac{x-2}{x-3}$

Non-permissible values: $x=0$ and $x=3$

$$
\begin{aligned}
& \frac{1}{x}=\frac{x-2}{x-3}-\frac{1}{x-3} \\
& \frac{1}{x}=\frac{x-3}{x-3} \\
& \frac{1}{x}=1 \\
& x=1
\end{aligned}
$$

b) $\frac{1}{u-2}+\frac{u-1}{u^{2}-4}=\frac{u+4}{u+2}$

$$
\frac{1}{u-2}+\frac{u-1}{(u-2)(u+2)}=\frac{u+4}{u+2}
$$

Non-permissible values: $u=-2$ and $u=2$
Common denominator: $(u-2)(u+2)$

$$
\left.\begin{array}{l}
(u-2)(u+2)\left(\frac{1}{u-2}\right)+(u-2)(u+2)\left(\frac{u-1}{(u-2)(u+2)}\right) \\
\\
=(u-2)(u+2)\left(\frac{u+4}{u+2}\right) \\
u+2+u-1
\end{array}\right)=(u-2)(u+4) \quad \begin{aligned}
2 u+1 & =u^{2}+2 u-8 \\
u^{2}-9 & =0 \\
u & =3 \text { or } u=-3
\end{aligned}
$$

Solutions are $u=-3$ and $u=3$.
c) $\frac{6 b^{2}}{b^{2}-25}+\frac{4 b}{5-b}=\frac{b}{b+5}$
$\frac{6 b^{2}}{(b-5)(b+5)}-\frac{4 b}{b-5}=\frac{b}{b+5}$
Non-permissible values: $b=-5$ and $b=5$
Common denominator: $(b-5)(b+5)$

$$
\begin{aligned}
&(b-5)(b+5)\left(\frac{6 b^{2}}{(b-5)(b+5)}\right)-(b-5)(b+5)\left(\frac{4 b}{b-5}\right) \\
&=(b-5)(b+5)\left(\frac{b}{b-5}\right) \\
& 6 b^{2}-4 b(b+5)=b^{2}-5 b \\
& 6 b^{2}-4 b^{2}-20 b=b^{2}-5 b \\
& b^{2}-15 b=0 \\
& b(b-15)=0 \\
& b=0 \text { or } b=15
\end{aligned}
$$

Solutions are $b=0$ and $b=15$.
d) $\frac{3 z-1}{2 z+1}+\frac{1}{6}=\frac{2 z-1}{2 z+1}+\frac{z+1}{z+3}$

$$
\begin{array}{r}
\frac{3 z-1}{2 z+1}-\frac{2 z-1}{2 z+1}+\frac{1}{6}=\frac{z+1}{z+3} \\
\frac{z}{2 z+1}+\frac{1}{6}=\frac{z+1}{z+3}
\end{array}
$$

Non-permissible values: $z=-\frac{1}{2}$ and $z=-3$
Common denominator: $6(2 z+1)(z+3)$

$$
\begin{aligned}
& 6(2 z+1)(z+3)\left(\frac{z}{2 z+1}\right)+6(2 z+1)(z+3)\left(\frac{1}{6}\right) \\
&=6(2 z+1)(z+3)\left(\frac{z+1}{z+3}\right) \\
& 6 z(z+3)+(2 z+1)(z+3)=(12 z+6)(z+1) \\
& 6 z^{2}+18 z+2 z^{2}+7 z+3=12 z^{2}+18 z+6 \\
& 4 z^{2}-7 z+3=0 \\
&(4 z-3)(z-1)=0 \\
& z=\frac{3}{4} \text { or } z=1
\end{aligned}
$$

Solutions are $z=\frac{3}{4}$ and $z=1$.
10. Solve each equation.
a) $\frac{b}{b^{2}-4}=\frac{2}{b^{2}-b-6}$
$\frac{b}{(b-2)(b+2)}=\frac{2}{(b-3)(b+2)}$
Non-permissible values: $b=2, b=-2$, and $b=3$
Common denominator: $(b-2)(b+2)(b-3)$

$$
\begin{aligned}
(b-2)(b+2) & (b-3)\left(\frac{b}{(b-2)(b-2)}\right) \\
& =(b-2)(b+2)(b-3)\left(\frac{2}{(b-3)(b+2)}\right) \\
b^{2}-3 b & =2 b-4 \\
b^{2}-5 b+4 & =0 \\
(b-4)(b-1) & =0 \\
b & =4 \text { or } b=1 \\
\text { Solutions are } b & =4 \text { and } b=1 .
\end{aligned}
$$

b) $\frac{16}{2 g^{2}+2 g-12}=\frac{6}{g^{2}-9}$

$$
\frac{16}{2\left(g^{2}+g-6\right)}=\frac{6}{(g-3)(g+3)}
$$

$$
\frac{16}{2(g+3)(g-2)}=\frac{6}{(g-3)(g+3)}
$$

Non-permissible values: $g=-3, g=2$, and $g=3$
Common denominator: $2(g+3)(g-3)(g-2)$

$$
\left.\begin{array}{l}
x(g+3)(g-3)(g-2)\left(\frac{16}{x(g+3)(g-2)}\right) \\
=2 f(g+3)(g-3)(g-2)\left(\frac{6}{(g-3)(g+3)}\right) \\
16 g-48=12 g-24 \\
4 g \\
=24 \\
g
\end{array}\right)
$$

c) $\frac{n}{n+1}+\frac{3 n+5}{n^{2}+4 n+3}=\frac{2}{n+3}$
$\frac{n}{n+1}+\frac{3 n+5}{(n+1)(n+3)}=\frac{2}{n+3}$
Non-permissible values: $n=-1$ and $n=-3$
Common denominator: $(n+1)(n+3)$

$$
\begin{aligned}
&(n+1)(n+3)\left(\frac{n}{n+1}\right)+(n+1)(n+3)\left(\frac{3 n+5}{(n+1)(n+3)}\right) \\
&=(n+1)(n+3)\left(\frac{2}{n+3}\right) \\
& n^{2}+3 n+3 n+5=2 n+2 \\
& n^{2}+4 n+3=0 \\
&(n+1)(n+3)=0 \\
& n=-1 \text { or } n=-3
\end{aligned}
$$

$n=-1$ and $n=-3$ are non-permissible values.
So, the equation has no solution.
11. The solutions of the equation $4=x+\frac{8}{x+m}$ are $x=3$ and $x=-4$. Determine the value of $m$. Show how you can verify your answer.

Common denominator: $x+m$

$$
\begin{aligned}
(x+m) 4 & =(x+m) x+(x+m)\left(\frac{8}{x+m}\right) \\
4 x+4 m & =x^{2}+m x+8 \\
x^{2}+m x-4 x+8-4 m & =0 \\
x^{2}+x(m-4)+(8-4 m) & =0
\end{aligned}
$$

An equation with roots $x=3$ and $x=-4$ is:

$$
\begin{array}{r}
(x-3)(x+4)=0 \\
x^{2}+x-12=0
\end{array}
$$

Compare the equations: $x^{2}+x(m-4)+(8-4 m)=0$

$$
x^{2}+x-12=0
$$

So, $m-4=1$ and $8-4 m=-12$

$$
m=5 \quad m=5
$$

The value of $m$ is 5 .
To verify the answer, substitute $m=5$ in the original equation, then solve the equation.
12. The measure, $d$ degrees, of each angle in a regular polygon with $n$ sides is given by the equation $d=180-\frac{360}{n}$.
a) What is the measure of each angle in a regular polygon with 15 sides?

Substitute $n=15$ :
$d=180-\frac{360}{15}$
$d=180-24$
$d=156$
Each angle measures $156^{\circ}$.
b) When each angle in a regular polygon is $162^{\circ}$, how many sides does the polygon have?

$$
\begin{aligned}
& \text { Substitute } d=162: \\
& \begin{aligned}
162 & =180-\frac{360}{n} \\
18 & =\frac{360}{n} \\
n(18) & =n\left(\frac{360}{n}\right) \\
18 n & =360 \\
n & =20
\end{aligned}
\end{aligned}
$$

The polygon has 20 sides.
13. Without solving the equation, how do you know that the equation $\frac{12}{4 x-4}=\frac{4}{x-1}$ has no solution?

Simplify the expression on the left.

$$
\begin{aligned}
\frac{{ }^{3} \nmid 2}{A(x-1)} & =\frac{4}{x-1} \\
\frac{3}{x-1} & =\frac{4}{x-1}
\end{aligned}
$$

Since the expressions have the same denominator but different numerators, I know the equation has no solution.

C
14. a) Write a rational equation that has 4 as a solution.

Work backward.

$$
\begin{aligned}
x & =4 & & \text { Write } 4 \text { as a difference of } 2 \text { numbers. } \\
x & =7-3 & & \text { Take } 3 \text { to the left side. } \\
x+3 & =7 & & \text { Divide each side by } x+3 . \\
\frac{x+3}{x+3} & =\frac{7}{x+3} & & \text { Simplify. } \\
1 & =\frac{7}{x+3}, x \neq-3 & &
\end{aligned}
$$

b) Write a rational equation that has -3 as a solution and has 3 as an extraneous root.
$\frac{1}{x-3}$ has $x=3$ as a non-permissible value.
Let both rational expressions in the equation have denominator $x-3$.
$\overline{x-3}=\overline{x-3}$
Write an equation that has $x=3$ and $x=-3$ as roots:
$x^{2}=9$
So, the rational equation becomes:
$\frac{x^{2}}{x-3}=\frac{9}{x-3}$
This equation has $x=3$ and $x=-3$ as roots. Since $x=3$ is a nonpermissible value, $x=3$ is an extraneous root. The only solution is $x=-3$.
15. Solve each equation.
a) $\frac{x+1}{x-3}=\frac{2 x}{x+2}$

Non-permissible values: $x=3$ and $x=-2$
Common denominator: $(x-3)(x+2)$
$(x-3)(x+2)\left(\frac{x+1}{x-3}\right)=(x-3)(x+2)\left(\frac{2 x}{x+2}\right)$
$x^{2}+3 x+2=2 x^{2}-6 x$
$x^{2}-9 x-2=0 \quad$ Use the quadratic formula.
$x=\frac{9 \pm \sqrt{(-9)^{2}-4(1)(-2)}}{2(1)}$
$x=\frac{9 \pm \sqrt{89}}{2}$
Solutions are $x=\frac{9+\sqrt{89}}{2}$ and $x=\frac{9-\sqrt{89}}{2}$.
b) $\frac{w^{2}}{w+4}=\frac{5}{3}$

Non-permissible value: $w=-4$
Common denominator: $3(w+4)$
$3(w+4)\left(\frac{w^{2}}{w+4}\right)=3(w+4)\left(\frac{5}{3}\right)$

$$
3 w^{2}=5 w+20
$$

$3 w^{2}-5 w-20=0 \quad$ Use the quadratic formula.
$w=\frac{5 \pm \sqrt{(-5)^{2}-4(3)(-20)}}{2(3)}$
$w=\frac{5 \pm \sqrt{265}}{6}$
Solutions are $w=\frac{5+\sqrt{265}}{6}$ and $w=\frac{5-\sqrt{265}}{6}$.
c) $\frac{1}{v}+\frac{1}{v-4}=2$

Non-permissible values: $v=0$ and $v=4$
Common denominator: $v(v-4)$

$$
\begin{aligned}
& \forall(v-4)\left(\frac{1}{\forall}\right)+v(v-4)\left(\frac{1}{x-4}\right)=v(v-4)(2) \\
& v-4+v=2 v^{2}-8 v \\
& 2 v^{2}-10 v+4=0 \\
& v^{2}-5 v+2=0 \quad \text { Use the quadratic formula. } \\
& v=\frac{5 \pm \sqrt{(-5)^{2}-4(1)(2)}}{2(1)} \\
& v=\frac{5 \pm \sqrt{17}}{2}
\end{aligned}
$$

Solutions are $v=\frac{5+\sqrt{17}}{2}$ and $v=\frac{5-\sqrt{17}}{2}$.

