Lesson 7.6 Exercises, pages 597-602

A Students should verify all solutions.
3. Lyle can fill the bathtub using the cold water tap in 8 min . When both the hot and cold water taps are fully open, he can fill the bathtub in 6 min. How long would it take Lyle to fill the bathtub using only the hot water tap? An equation that represents this situation is: $\frac{6}{8}+\frac{6}{t}=1$, where t is the time in minutes required to fill the bathtub using only the hot water tap. Solve the equation to solve the problem.

Non-permissible value: $t=0$
Common denominator: $8 t$

$$
\begin{aligned}
\frac{6}{8}+\frac{6}{t} & =1, t>0 \\
8 t\left(\frac{6}{8}\right)+8 t\left(\frac{6}{\not t}\right) & =8 t(1) \\
6 t+48 & =8 t \\
48 & =2 t \\
t & =24
\end{aligned}
$$

It would take 24 min to fill the bathtub using only the hot water tap.
4. Bronwyn rides her electric bicycle $10 \mathrm{~km} / \mathrm{h}$ faster than Aaron.

Bronwyn can travel 60 km in the same time that it takes Aaron to travel 40 km . Determine Bronwyn's average speed and Aaron's average speed.
An equation that represents this situation is: $\frac{60}{s+10}=\frac{40}{s}$, where s is Aaron's average speed in kilometres per hour.
Solve the equation to solve the problem.
Non-permissible values: $s=-10$ and $s=0$
Common denominator: $s(s+10)$

$$
\begin{aligned}
\frac{60}{s+10} & =\frac{40}{s}, s>0 \\
s(s+10)\left(\frac{60}{s+10}\right) & =s(s+10)\left(\frac{40}{s}\right) \\
60 s & =40 s+400 \\
20 s & =400 \\
s & =20
\end{aligned}
$$

Aaron's average speed is $20 \mathrm{~km} / \mathrm{h}$. Bronwyn's average speed is $(20+10) \mathrm{km} / \mathrm{h}$, or $30 \mathrm{~km} / \mathrm{h}$.

For questions 5 to 13 , write an equation to model each situation. Then solve the equation to solve the problem.
5. It takes a painter 3 h to spray paint a fence. When two people paint the fence, one using a sprayer and the other using a brush, they can paint the fence in 2 h . How long would it take one person to paint the fence using only a brush?

Let t hours represent the time it takes one person to paint the fence using only a brush.
After $2 h$, a painter has spray painted $\frac{2}{3}$ of the fence and the person using a brush has painted $\frac{2}{t}$ of the fence.
So, an equation is: $\frac{2}{3}+\frac{2}{t}=1$
Non-permissible value: $t=0$
Common denominator: $3 t$

$$
\begin{aligned}
\frac{2}{3}+\frac{2}{t} & =1, t>0 \\
3 t\left(\frac{2}{3}\right)+3 t\left(\frac{2}{t}\right) & =3 t(1) \\
2 t+6 & =3 t \\
t & =6
\end{aligned}
$$

It would take one person 6 h to paint the fence using only a brush.
6. Jenny can clean out the garage in 5 h . When her son helps, they can clean out the garage in 3 h . How long would it take Jenny's son to clean out the garage on his own?

Let t hours represent the time it takes Jenny's son to clean out the garage on his own.
After 3 h , Jenny has cleaned out $\frac{3}{5}$ of the garage and Jenny's son has
cleaned out $\frac{3}{t}$ of the garage.
So, an equation is: $\frac{3}{5}+\frac{3}{t}=1, t>0$
Non-permissible value: $t=0$
Common denominator: $5 t$

$$
\begin{aligned}
\frac{3}{5}+\frac{3}{t} & =1 \\
5 t\left(\frac{3}{5}\right)+5 t\left(\frac{3}{t}\right) & =5 t(1) \\
3 t+15 & =5 t \\
2 t & =15 \\
t & =7.5
\end{aligned}
$$

It would take Jenny's son 7.5 h to clean out the garage on his own.
7. How much bleach should be added to 47 L of water to make a solution that is 6% bleach?

Let the volume of bleach added be v litres.
Then, total volume of the solution is $(v+47)$ litres.
$\frac{\text { volume of bleach }}{\text { total volume }}=\frac{6}{100}$

$$
\frac{v}{v+47}=\frac{6}{100}, v>0
$$

$v=-47$ is a non-permissible value.
A common denominator is: $100(v+47)$

$$
\begin{aligned}
100(v+47)\left(\frac{v}{v+-4 T}\right) & =100(v+47)\left(\frac{6}{100}\right) \\
100 v & =6 v+282 \\
94 v & =282 \\
v & =3
\end{aligned}
$$

To create a solution that is 6% bleach, 3 L of bleach should be added to 47 L of water.
8. A boat travels 4 km upstream in the same time that it takes the boat to travel 10 km downstream. The average speed of the current is $3 \mathrm{~km} / \mathrm{h}$. What is the average speed of the boat in still water?

Let the average speed of the boat in still water be s kilometres per hour.
Average speed downstream: $(s+3) \mathrm{km} / \mathrm{h}$
Distance downstream: 10 km
Time downstream: $\frac{10}{s+3}$ hours
Average speed upstream: $(s-3) \mathrm{km} / \mathrm{h}$
Distance upstream: 4 km
Time upstream: $\frac{4}{s-3}$ hours
It takes the same time to travel upstream as it does to travel downstream.
So, an equation is: $\frac{10}{s+3}=\frac{4}{s-3}, s>3$
$s=3$ and $s=-3$ are non-permissible values.
A common denominator is: $(s+3)(s-3)$

$$
\begin{aligned}
(s+3)(s-3)\left(\frac{10}{s+3}\right) & =(s+3)(s-3)\left(\frac{4}{s-3}\right) \\
10 s-30 & =4 s+12 \\
6 s & =42 \\
s & =7
\end{aligned}
$$

The average speed of the boat in still water is $7 \mathrm{~km} / \mathrm{h}$.
9. A natural number is 4 more than another natural number. When the reciprocal of the greater number is subtracted from the reciprocal of the lesser number, the difference is $\frac{1}{15}$. What are the two numbers?

Let one natural number be x. Then the other natural number is $x+4$.
The reciprocal of the lesser number is: $\frac{1}{x}$
The reciprocal of the greater number is: $\frac{1}{x+4}$
Their difference is: $\frac{1}{15}$
So, an equation is: $\frac{1}{x}-\frac{1}{x+4}=\frac{1}{15}, x \in \mathbb{N}$
$x=-4$ and $x=0$ are non-permissible values.
A common denominator is: $15(x)(x+4)$

$$
\begin{aligned}
15(x)(x+4)\left(\frac{1}{x}\right)-15(x)(x+4)\left(\frac{1}{x+4}\right) & =15(x)(x+4)\left(\frac{1}{15}\right) \\
15 x+60-15 x & =x^{2}+4 x \\
x^{2}+4 x-60 & =0 \\
(x+10)(x-6) & =0
\end{aligned}
$$

$x=-10$ or $x=6$
Since $x \in \mathbb{N}, x=-10$ is not a solution.
So, the natural numbers are 6 and $6+4$, or 10 .
10. It takes Marcy's apprentice 9 h longer to build a deck than it takes Marcy, an experienced carpenter. When they work together, they can build the deck in 20 h . How long would it take each person to build the deck working alone?
Let t hours represent the time it takes Marcy to build a deck.
Then, the time it takes Marcy's apprentice is $(t+9)$ hours.
After 20 h , Marcy has built $\frac{20}{t}$ of the deck and Marcy's apprentice has
built $\frac{20}{t+9}$ of the deck.
So, an equation is: $\frac{20}{t}+\frac{20}{t+9}=1, t>0$
Non-permissible values: $t=0$ and $t=-9$
Common denominator: $t(t+9)$

$$
\begin{aligned}
\frac{20}{t}+\frac{20}{t+9} & =1 \\
t(t+9)\left(\frac{20}{t}\right)+t\left(t+9 t\left(\frac{20}{t+9}\right)\right. & =t(t+9)(1) \\
20 t+180+20 t & =t^{2}+9 t \\
t^{2}-31 t-180 & =0 \\
(t-36)(t+5) & =0
\end{aligned}
$$

$t=36$ or $t=-5$
Since time cannot be negative, $t=36$
It would take Marcy 36 h to build the deck and it would take Marcy's apprentice $36 \mathrm{~h}+9 \mathrm{~h}$, or 45 h to build the deck.
11. The average speed of an airplane is 10 times that of a car. It takes the airplane 18 h less than the car to travel 1000 km . Determine the average speeds of the airplane and the car.

Let the average speed of the car be s kilometres per hour.
Then the average speed of the airplane is 10 s kilometres per hour.
Distance: 1000 km
Time for car: $\frac{1000}{s}$ hours
Time for airplane: $\frac{1000}{10 \mathrm{~s}}$ hours
It takes the airplane 18 h less than the car to travel this distance.
So, an equation is: $\frac{1000}{s}-\frac{1000}{10 s}=18, s>0$
Non-permissible value: $s=0$
Common denominator: 10s

$$
\begin{aligned}
\frac{1000}{s}-\frac{1000}{10 s} & =18 \\
10 s\left(\frac{1000}{s}\right)-105\left(\frac{1000}{105}\right) & =10 s(18) \\
10000-1000 & =180 s \\
9000 & =180 s \\
s & =50
\end{aligned}
$$

The average speed of the car is $50 \mathrm{~km} / \mathrm{h}$ and the average speed of the airplane is $10(50 \mathrm{~km} / \mathrm{h})$, or $500 \mathrm{~km} / \mathrm{h}$.
12. Ann cycles 6 km to return a friend's bicycle. She then walks home. Her total time for the trip is 90 min . Ann cycles four times as fast as she walks. Determine Ann's average speeds for walking and for cycling.

Let Ann's average walking speed be s kilometres per hour.
Then her average cycling speed is $4 s$ kilometres per hour.
Distance: 6 km
Time cycling: $\frac{6}{5}$ hours
Time walking: $\frac{6}{4 s}$ hours
Total time taken is 90 min , or 1.5 h .
So, an equation is: $\frac{6}{s}+\frac{6}{4 s}=1.5, s>0$
Non-permissible value: $s=0$
Common denominator: 4 s

$$
\frac{6}{s}+\frac{6}{4 s}=1.5
$$

$4 s\left(\frac{6}{5}\right)+45\left(\frac{6}{45}\right)=4 s(1.5)$

$$
24+6=6 s
$$

$$
30=6 s
$$

$$
s=5
$$

Ann's average walking speed is $5 \mathrm{~km} / \mathrm{h}$ and her average cycling speed is $4(5 \mathrm{~km} / \mathrm{h})$, or $20 \mathrm{~km} / \mathrm{h}$.

C
13. Henry's average running speed is $1 \mathrm{~km} / \mathrm{h}$ greater than Brandon's. In a $10-\mathrm{km}$ practice race for Footstock in Alberta, Brandon finished 2 min behind Henry. Determine the average running speed of each person.

Let Brandon's average running speed be skilometres per hour.
Then Henry's average running speed is $(s+1)$ kilometres per hour.
Distance: 10 km
Brandon's time: $\frac{10}{\mathrm{~s}}$ hours
Henry's time: $\frac{10}{s+1}$ hours
It took Brandon 2 min , or $\frac{1}{30} \mathrm{~h}$ longer to finish the race.
So, an equation is: $\frac{10}{s}-\frac{1}{30}=\frac{10}{s+1}, s>0$
Non-permissible values: $s=0$ and $s=-1$
Common denominator: 30s(s+1)

$$
\begin{aligned}
\frac{10}{s}-\frac{1}{30} & =\frac{10}{s+1} \\
30 s(s+1)\left(\frac{10}{s}\right)-30 s(s+1)\left(\frac{1}{30}\right) & =30 s(s+1)\left(\frac{10}{s-1}\right) \\
300 s+300-s^{2}-s & =300 s \\
s^{2}+s-300 & =0 \quad \text { Use the quadratic formula. }
\end{aligned}
$$

$s=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad$ Substitute: $a=1, b=1, c=-300$
$s=\frac{-1 \pm \sqrt{(1)^{2}-4(1)(-300)}}{2(1)}$
$s=\frac{-1 \pm \sqrt{1201}}{2}$
$s \doteq 16.8$ or $s \doteq-17.8$
Since speed cannot be negative, $s \doteq 16.8$.
Brandon's average running speed is approximately $16.8 \mathrm{~km} / \mathrm{h}$ and Henry's average running speed is approximately $(16.8+1) \mathrm{km} / \mathrm{h}$, or $17.8 \mathrm{~km} / \mathrm{h}$.

