1. Multiple Choice What are the non-permissible values of *x* for

$$\frac{x^{2}-3x}{x^{2}+8x-33}$$
?
A. -11, 0 B. -3, 0, 11 C. -11 (D) -11, 3

2. Multiple Choice Which is the correct simplification of $\frac{x^2 - 4}{x^2 + 4x + 4}$? (A) $\frac{x-2}{x+2}, x \neq -2$ B. $\frac{x-2}{x+2}, x \neq -2, 2$ C. $\frac{-1}{x+1}, x \neq -1$ D. $\frac{-1}{4x}, x \neq 0$

3. Simplify.

a)
$$\frac{p^2 - 9}{18} \cdot \frac{12p}{3 - p}$$

b) $\frac{2b^2 - 3b + 1}{b^2 - b} \div \frac{6b - 3}{b^2}$
 $= \frac{(p - 3)(p + 3)}{_3 18} \cdot \frac{^2 12p}{_{-(p - 3)}} = \frac{(2b - 1)(b - 1)}{b(b - 1)} \div \frac{3(2b - 1)}{b^2}$
 $= \frac{2p(p + 3)}{_{-3}}$
 $= \frac{-2p(p + 3)}{_{3}}, p \neq 3$
 $= \frac{b}{_{3}}, b \neq 0, \frac{1}{_{2}}, 1$

c)
$$\frac{8a}{5bc^2} \div \frac{20ab}{15c} \cdot \frac{2b}{3}$$

$$= \frac{4}{5bc^2} \cdot \frac{3}{15c} \cdot \frac{3}{20x}$$
Common denominator: 80x

$$= \frac{4}{5bc}, a \neq 0, b \neq 0, c \neq 0$$

$$= \frac{5x}{8} \cdot \frac{10x}{10x} + \frac{3}{20x} \cdot \frac{4}{4}$$

$$= \frac{50x^2}{80x} + \frac{12}{80x}$$

$$= \frac{50x^2 + 12}{80x}$$

$$= \frac{2(25x^2 + 6)}{80x}$$

$$= \frac{25x^2 + 6}{40x}, x \neq 0$$

e)
$$\frac{x+1}{5x+10} - \frac{3}{8-4x}$$

 $= \frac{x+1}{5(x+2)} - \frac{3}{-4(x-2)}$
 $= \frac{x+1}{5(x+2)} + \frac{3}{4(x-2)}$
Common denominator:
 $20(x-2)(x+2)$
 $= \frac{(x+1)}{5(x+2)} \cdot \frac{4(x-2)}{4(x-2)}$
 $+ \frac{3}{4(x-2)} \cdot \frac{5(x+2)}{5(x+2)}$
 $= \frac{(x+1)(4x-8)}{20(x+2)(x-2)}$
 $+ \frac{15(x+2)}{20(x+2)(x-2)}$
 $= \frac{4x^2 - 4x - 8 + 15x + 30}{20(x+2)(x-2)}$
 $= \frac{4x^2 + 11x + 22}{20(x+2)(x-2)}, x \neq -2, 2$

f)
$$\frac{n}{n^2 - 16} - \frac{n+1}{n^2 + 5n + 4}$$

= $\frac{n}{(n-4)(n+4)} - \frac{n+1}{(n+4)(n+1)}$
= $\frac{n}{(n-4)(n+4)} - \frac{1}{n+4}$
Common denominator:

(n - 4)(n + 4)

$$= \frac{n}{(n-4)(n+4)} - \frac{1}{(n+4)} \cdot \frac{(n-4)}{(n-4)}$$
$$= \frac{n}{(n-4)(n+4)} - \frac{n-4}{(n-4)(n+4)}$$
$$= \frac{4}{(n-4)(n+4)}, n \neq -4, -1, 4$$

4. Solve each equation.

a)
$$\frac{a}{a-5} + 3 = \frac{5}{a-5}$$

Non-permissible value: $a = 5$
Common denominator: $a - 5$
 $\frac{a}{a-5} + 3 = \frac{5}{a-5}$
 $3 = \frac{5}{a-5} - \frac{a}{a-5}$
 $3 = \frac{5-a}{a-5}$
 $(a-5)(3) = (a-5)(\frac{5-a}{a-5})$
 $3a - 15 = 5 - a$
 $4a = 20$
 $a = 5$
 $a = 5$ is a non-permissible value.
So, the equation has no solution.

b) $\frac{2b+1}{b-1} - \frac{3b}{b+2} = \frac{18}{b^2+b-2}$ $\frac{2b+1}{b-1} - \frac{3b}{b+2} = \frac{18}{(b+2)(b-1)}$ Non-permissible values: b = 1 and b = -2Common denominator: (b+2)(b-1) $(b+2)(b-1)(\frac{2b+1}{b-1}) - (b+2)(b-1)(\frac{3b}{b+2}) = (b+2)(b-1)(\frac{18}{(b+2)(b-1)})$ $2b^2 + 5b + 2 - (3b^2 - 3b) = 18$ $2b^2 + 5b + 2 - 3b^2 + 3b = 18$ $-b^2 + 8b - 16 = 0$ $b^2 - 8b + 16 = 0$ $(b-4)^2 = 0$ b = 4

5. Pump A can drain a pond in 8 h. Working together, Pumps A and B can drain the same pond in 5 h. How long would it take Pump B to drain the pond on its own?

Let *t* hours represent the time it takes Pump B to drain the pond on its own. After 5 h, Pump A has drained $\frac{5}{8}$ of the pond and Pump B has drained $\frac{5}{t}$ of the pond.

t So, an equation is: $\frac{5}{8} + \frac{5}{t} = 1$, t > 0Non-permissible value: t = 0Common denominator: 8t $\frac{5}{8} + \frac{5}{t} = 1$ $\Re(t(\frac{5}{\Re}) + \Re(t(\frac{5}{\chi})) = \Re(1)$ $5t + 40 = \Re(1)$ $5t + 40 = \Re(1)$ $5t + 40 = \Re(1)$ t = 40 $t = \frac{40}{3}$ It would take Pump B $\frac{40}{3}$ h, or $13\frac{1}{3}$ h, or 13 h 20 min to drain the pond on its own.