Lesson 8.4 Math Lab: Assess Your Understanding, pages 671-673

1. Without graphing, predict the number of vertical asymptotes of the graph of each reciprocal function. Identify the equation of each asymptote.
a) $y=\frac{1}{(x+2)(x-4)}$

The x-intercepts of the related quadratic function are -2 and 4.
There are 2 vertical asymptotes: $x=-2$ and $x=4$
b) $y=\frac{1}{(-3 x+1)^{2}}$

The x-intercept of the related quadratic function is $\frac{1}{3}$.
There is 1 vertical asymptote: $x=\frac{1}{3}$
c) $y=\frac{1}{x^{2}}$

The x-intercept of the related quadratic function is 0 .
There is 1 vertical asymptote: $x=0$
d) $y=\frac{1}{4 x^{2}+3}$

The related quadratic function has no x-intercepts.
There are no vertical asymptotes.
2. Look at your answers to question 1. When the equation of a reciprocal quadratic function is given in factored form, how can you tell how many vertical asymptotes its graph will have?

To tell how many vertical asymptotes the graph of a reciprocal quadratic function will have, I look at the expression in the denominator. When the expression cannot be factored, there are no vertical asymptotes. When the expression has two identical factors, there is 1 vertical asymptote.
When the expression has two different factors, there are 2 vertical asymptotes.
3. Graph $y=a(x-p)^{2}+q$ and $y=\frac{1}{a(x-p)^{2}+q}$ on the same screen for 6 different sets of values of a, p, and q. Sketch what you see on the screen. How can you use the signs of a, p, and q to determine the number of vertical asymptotes of the graph of the function
$y=\frac{1}{a(x-p)^{2}+q}$?
When a is negative, the graph opens down: If q is also negative, the related quadratic function has no x-intercepts, so there are no vertical asymptotes.
For example, $y=-2(x-3)^{2}-1$ and $y=\frac{1}{-2(x-3)^{2}-1}:$

If q is positive, the related quadratic function has $2 x$-intercepts, so there are 2 vertical asymptotes. For example, $y=-2(x+3)^{2}+1$ and
$y=\frac{1}{-2(x+3)^{2}+1}$:

If $q=0$, the related quadratic function has $1 x$-intercept, so there is 1 vertical asymptote. For example, $y=-2(x-3)^{2}$ and $y=\frac{1}{-2(x-3)^{2}}$:

When a is positive, the graph opens up: If q is also positive, the related quadratic function has no x-intercepts, so there are no vertical asymptotes. For example,
$y=2(x+3)^{2}+1$ and $y=\frac{1}{2(x+3)^{2}+1}$:

If q is negative, the related quadratic function has $2 x$-intercepts, so there are 2 vertical asymptotes. For example, $y=2 x^{2}-1$ and $y=\frac{1}{2 x^{2}-1}$:

If $q=0$, the related quadratic function has $1 x$-intercept, so there is 1 vertical asymptote. For example,
$y=2(x-3)^{2}$ and $y=\frac{1}{2(x-3)^{2}}$:

4. Predict the vertical asymptotes of the graph of each reciprocal function. Graph to check your predictions.
a) $y=\frac{1}{(x+1)^{2}-9}$

Since the value of a is positive and the value of q is negative, I predict the graph of the reciprocal function will have 2 vertical asymptotes.
$y=\frac{1}{(x+1)^{2}-9}$ is undefined when

$$
\begin{aligned}
(x+1)^{2}-9 & =0 \\
(x+1)^{2} & =9 \\
x+1 & =3 \text { or } x+1 \\
x & =2 \quad x=-3 \\
x & =-4
\end{aligned}
$$

$$
x=2 \text { and } x=-4 \text { are }
$$

So, the lines $x=2$ and $x=-4$ are vertical asymptotes.
The graph shows my prediction is correct.
b) $y=\frac{1}{(x+1)^{2}}$

Since the value of a is positive and the value of q is 0 , I predict the graph of the reciprocal function will have 1 vertical asymptote.
$y=\frac{1}{(x+1)^{2}}$ is undefined when

$$
\begin{aligned}
(x+1)^{2} & =0 \\
x+1 & =0 \\
x & =-1
\end{aligned}
$$

So, the line $x=-1$ is a vertical asymptote.
The graph shows my prediction is correct.
c) $y=\frac{1}{-(x+1)^{2}+16}$

Since the value of a is negative and the value of q is positive, I predict the graph of the reciprocal function will have 2 vertical asymptotes.

$$
\begin{aligned}
& y=\frac{1}{-(x+1)^{2}+16} \text { is undefined when } \\
& -(x+1)^{2}+16=0 \\
& -(x+1)^{2}=-16 \\
& (x+1)^{2}=16 \\
& x+1=4 \text { or } x+1=-4 \\
& x=3 \quad x=-5
\end{aligned}
$$

So, the lines $x=3$ and $x=-5$ are vertical asymptotes.
The graph shows my prediction is correct.

