Lesson 8.4 Math Lab: Assess Your Understanding, pages 671–673

1. Without graphing, predict the number of vertical asymptotes of the graph of each reciprocal function. Identify the equation of each asymptote.

a)
$$y = \frac{1}{(x+2)(x-4)}$$

Ø

Ø

Ø

Ø

Ø

The *x*-intercepts of the related quadratic function are -2 and 4. There are 2 vertical asymptotes: x = -2 and x = 4

b)
$$y = \frac{1}{(-3x+1)^2}$$

The *x*-intercept of the related quadratic function is $\frac{1}{3}$. There is 1 vertical asymptote: $x = \frac{1}{3}$

$$\mathbf{c}) \ y = \frac{1}{x^2}$$

The *x*-intercept of the related quadratic function is 0. There is 1 vertical asymptote: x = 0

d)
$$y = \frac{1}{4x^2 + 3}$$

The related quadratic function has no *x*-intercepts. There are no vertical asymptotes.

- **2.** Look at your answers to question 1. When the equation of a reciprocal quadratic function is given in factored form, how can you tell how many vertical asymptotes its graph will have?
- To tell how many vertical asymptotes the graph of a reciprocal quadratic function will have, I look at the expression in the denominator.
 When the expression cannot be factored, there are no vertical asymptotes.
 When the expression has two identical factors, there is 1 vertical asymptote.
 When the expression has two different factors, there are 2 vertical asymptotes.

3. Graph $y = a(x - p)^2 + q$ and $y = \frac{1}{a(x - p)^2 + q}$ on the same screen

for 6 different sets of values of *a*, *p*, and *q*. Sketch what you see on the screen. How can you use the signs of *a*, *p*, and *q* to determine the number of vertical asymptotes of the graph of the function

$$y = \frac{1}{a(x-p)^2 + q^2}$$

Ø

When *a* is negative, the graph opens down: If *q* is also negative, the related quadratic function has no *x*-intercepts, so there are no vertical asymptotes. For example, $y = -2(x - 3)^2 - 1$ and

$$y = \frac{1}{-2(x-3)^2 - 1}$$

If q is positive, the related quadratic function has 2 x-intercepts, so there are 2 vertical asymptotes. For example, $y = -2(x + 3)^2 + 1$ and $y = \frac{1}{-2(x + 3)^2 + 1}$:

If q = 0, the related quadratic function has 1 *x*-intercept, so there is 1 vertical asymptote. For example, $y = -2(x - 3)^2$ and $y = \frac{1}{-2(x - 3)^2}$:

When *a* is positive, the graph opens up: If *q* is also positive, the related quadratic function has no *x*-intercepts, so there are no vertical asymptotes. For example, $y = 2(x + 3)^2 + 1$ and $y = \frac{1}{2(x + 3)^2 + 1}$:

If *q* is negative, the related quadratic function has 2 *x*-intercepts, so there are 2 vertical asymptotes. For example,

$$y = 2x^2 - 1$$
 and $y = \frac{1}{2x^2 - 1}$:

If q = 0, the related quadratic function has 1 *x*-intercept, so there is 1 vertical asymptote. For example,

$$y = 2(x - 3)^2$$
 and $y = \frac{1}{2(x - 3)^2}$:

4. Predict the vertical asymptotes of the graph of each reciprocal function. Graph to check your predictions.

a)
$$y = \frac{1}{(x+1)^2 - 9}$$

Ø

Ø

Ø

Since the value of *a* is positive and the value of *q* is negative, I predict the graph of the reciprocal function will have 2 vertical asymptotes.

$$y = \frac{1}{(x + 1)^2 - 9}$$
 is undefined when

$$(x + 1)^2 - 9 = 0$$

$$(x + 1)^2 = 9$$

$$x + 1 = 3 \text{ or } x + 1 = -3$$

$$x = 2$$

$$x = -4$$

So, the lines x = 2 and x = -4 are vertical asymptotes. The graph shows my prediction is correct.

b)
$$y = \frac{1}{(x+1)^2}$$

Since the value of *a* is positive and the value of *q* is 0, I predict the graph of the reciprocal function will have 1 vertical asymptote.

 $y = \frac{1}{(x + 1)^2}$ is undefined when $(x + 1)^2 = 0$ x + 1 = 0 x = -1

So, the line x = -1 is a vertical asymptote. The graph shows my prediction is correct.

c)
$$y = \frac{1}{-(x+1)^2 + 16}$$

Since the value of *a* is negative and the value of *q* is positive, I predict the graph of the reciprocal function will have 2 vertical asymptotes.

$$y = \frac{1}{-(x + 1)^{2} + 16}$$
 is undefined when

$$-(x + 1)^{2} + 16 = 0$$

$$-(x + 1)^{2} = -16$$

$$(x + 1)^{2} = 16$$

$$x + 1 = 4 \text{ or } x + 1 = -4$$

$$x = 3$$

$$x = -5$$

So, the lines x = 3 and x = -5 are vertical asymptotes. The graph shows my prediction is correct.

34 8.4 Math Lab: Using Technology to Graph Reciprocals of Quadratic Functions—Solutions DO NOT COPY. ©P