Lesson 8.5 Exercises, pages 680-688

A
3. For each graph of $y=f(x)$, draw vertical lines to represent the vertical asymptotes, if they exist, of the graph of $y=\frac{1}{f(x)}$.
a)

The x-intercepts of the graph of $y=f(x)$ are 2 and 6 .
So, the graph of $y=\frac{1}{f(x)}$ has vertical asymptotes at $x=2$ and $x=6$.
b)

The x-intercept of the graph of $y=f(x)$ is -2 . So, the graph of $y=\frac{1}{f(x)}$ has a vertical asymptote at $x=-2$.
4. For each graph in question 3 , identify the values of x for which the graph of $y=\frac{1}{f(x)}$ is above the x-axis, and for which it is below
the x-axis.
a) Above the x-axis: $2<x<6$
Below the x-axis:
$x<2$ or $x>6$
b) Below the x-axis:
$x \in \mathbb{R}, x \neq-2$
Above the x-axis: never
5. On each graph from question 3 , sketch the graph of $y=\frac{1}{f(x)}$.
a)

The x-axis is a horizontal asymptote. Plot points where the lines $y=1$ and $y=-1$ intersect the graph. These points are common to both graphs. The graph of $y=f(x)$ has vertex (4, 4), so point $\left(4, \frac{1}{4}\right)$ lies on $y=\frac{1}{f(x)}$.
b)

The x-axis is a horizontal asymptote. Plot points where the line $y=-1$ intersects the graph. These points are common to both graphs. Since the graph has one vertical asymptote, it has Shape 2.

Since the graph has 2 vertical asymptotes, it has Shape 3.
6. Match each graph of $y=f(x)$ to the corresponding graph of $y=\frac{1}{f(x)}$. What features of the graphs did you use to make your decisions?
a)

b)

i)

			2^{y}		$y=$	$\frac{1}{f(x)}$	
-4	-2			2	4		

ii)

The graph that corresponds to graph a is graph ii. The graph of $y=f(x)$ in part a has $2 x$-intercepts, so the graph of its reciprocal function has 2 vertical asymptotes.
The graph that corresponds to graph b is graph i . The graph of $y=f(x)$ in part b has no x-intercepts, so the graph of its reciprocal function has no vertical asymptotes.

B
7. How many vertical asymptotes does the graph of each reciprocal function have? Identify the equation of each vertical asymptote.
a) $y=\frac{1}{-(x+3)^{2}}$
b) $y=\frac{1}{(x-2)(x+6)}$
$(x-2)(x+6)=0$ when $x=2$ or
$-(x+3)^{2}=0$ when
$x=-3$. So, the graph of
$y=\frac{1}{-(x+3)^{2}}$ has
1 vertical asymptote,
$x=-3$.
$x=-6$. So, the graph of
$y=\frac{1}{(x-2)(x+6)}$ has 2 vertical
asymptotes, $x=2$ and $x=-6$.
c) $y=\frac{1}{x^{2}+x-6}$
d) $y=\frac{1}{-3 x^{2}-9}$
$x^{2}+x-6=(x+3)(x-2)$
$-3 x^{2}-9=-3\left(x^{2}+3\right)$
$(x+3)(x-2)=0$ when
Since $x^{2}+3$ cannot be 0 , the graph
$x=-3$ or $x=2$. So, the
graph of $y=\frac{1}{x^{2}+x-6}$ has
of $y=\frac{1}{-3 x^{2}-9}$ has no vertical asymptotes.
2 vertical asymptotes, $x=-3$ and $x=2$.
8. On the graph of each quadratic function $y=f(x)$, sketch a graph of the reciprocal function $y=\frac{1}{f(x)}$. Identify the vertical asymptotes, if they exist. Explain your strategies.
a)

The graph of $y=f(x)$ has no x-intercepts, so the graph of $y=\frac{1}{f(x)}$ has no vertical asymptotes and has Shape 1.
Horizontal asymptote: $y=0$
Points $(0,-4),(-1,-5)$, and $(1,-5)$ lie on $y=f(x)$, so points $(0,-0.25),(-1,-0.2)$, and $(1,-0.2)$ lie on $y=\frac{1}{f(x)}$.
b)

The graph of $y=f(x)$ has $2 x$-intercepts, so the graph of $y=\frac{1}{f(x)}$ has 2 vertical asymptotes, $x=-3$ and $x=-1$, and has Shape 3.
Horizontal asymptote: $y=0$
Plot points where the lines $y=1$ and $y=-1$ intersect the graph of $y=f(x)$. These points are common to both graphs. The graph of $y=f(x)$ has vertex ($-2,-2$), so point ($-2,-0.5$) lies on $y=\frac{1}{f(x)}$.
c)

The graph of $y=f(x)$ has 1 x-intercept, so the graph of $y=\frac{1}{f(x)}$ has 1 vertical asymptote, $x=3$, and has Shape 2.
Horizontal asymptote: $y=0$ Plot points where the line $y=1$ intersects the graph of $y=f(x)$. These points are common to both graphs.
d)

The graph of $y=f(x)$ has no x-intercepts, so the graph of $y=\frac{1}{f(x)}$ has no vertical asymptotes and has Shape 1.
Horizontal asymptote: $y=0$
Points $(3,2),(1,4)$, and $(5,4)$ lie on $y=f(x)$, so points $(3,0.5),(1,0.25)$, and $(5,0.25)$ lie on $y=\frac{1}{f(x)}$.
9. On the graph of each reciprocal function $y=\frac{1}{f(x)}$, sketch a graph of the quadratic function $y=f(x)$.

The graph has one vertical asymptote, $x=-5$, so the graph of $y=f(x)$ has vertex $(-5,0)$. The line $y=-1$ intersects the graph at 2 points that are common to both graphs.
b)

The graph has 2 vertical asymptotes, $x=-1$ and $x=1$, so the graph of $y=f(x)$ has x-intercepts -1 and 1.
The point $\left(0,-\frac{1}{4}\right)$ is on the line of symmetry, so $(0,-4)$ is the vertex of $y=f(x)$.
c)

The graph has no vertical asymptote, so the graph of $y=f(x)$ has no x-intercept.
The point $(-6,1)$ is on the line of symmetry, so $(-6,1)$ is the vertex of $y=f(x)$. Points $(-7,0.5)$ and $(-5,0.5)$ lie on $y=f(x)$, so points ($-7,2$) and $(-5,2)$ lie on $y=\frac{1}{f(x)}$.
d)

The graph has one vertical asymptote, $x=5$, so the graph of $y=f(x)$ has vertex $(5,0)$. The line $y=1$ intersects the graph at 2 points that are common to both graphs.
10. The graphs of the reciprocal functions $y=\frac{1}{f(x)}$ and $y=\frac{1}{g(x)}$ are shown below.
i)

ii)

a) Identify whether each function $y=f(x)$ and $y=g(x)$ is linear or quadratic. How did you decide?
i) $y=f(x)$ is quadratic. I recognize the shape of the graph as that of the reciprocal of a quadratic function with $1 x$-intercept.
ii) $y=g(x)$ is linear. I recognize the shape of the graph as that of the reciprocal of a linear function.
b) On the graph of each reciprocal function, sketch a graph of the related linear or quadratic function. What strategy did you use each time?
i) The graph has one vertical asymptote, $x=4$, so the graph of $y=f(x)$ has vertex $(4,0)$. The line $y=-1$ intersects the graph at 2 points that are common to both graphs.
ii) Vertical asymptote is about
$x=-1.8$, so graph of $y=g(x)$ has x-intercept -1.8 . Mark points at $y=1$ and $y=-1$ on graph of $y=\frac{1}{g(x)}$, then draw a line through these points for the graph of $y=g(x)$.
11. Graph each pair of functions on the same grid.

Explain your strategies.
a) $y=4(x+2)^{2}$ and $y=\frac{1}{4(x+2)^{2}}$

The graph of $y=4(x+2)^{2}$ opens up, has vertex $(-2,0)$, and x-intercept -2 . The graph of $y=\frac{1}{4(x+2)^{2}}$ has vertical asymptote, $x=-2$ and horizontal asymptote $y=0$. Plot points where the line $y=1$ intersects the graph of $y=4(x+2)^{2}$. These points are common to both graphs. The graph of the
 reciprocal function has Shape 2.
b) $y=-2 x^{2}-3$ and $y=\frac{1}{-2 x^{2}-3}$

The graph of $y=-2 x^{2}-3$ opens down, with vertex $(0,-3)$, so the graph has no x-intercepts. The graph of $y=\frac{1}{-2 x^{2}-3}$ has no vertical asymptotes; the horizontal asymptote is $y=0$. Points $(0,-3),(1,-5)$, and $(-1,-5)$ lie on $y=-2 x^{2}-3$.
So, points $\left(0,-\frac{1}{3}\right),(1,-0.2)$, and

$(-1,-0.2)$ lie on $y=\frac{1}{-2 x^{2}-3}$. The graph
of the reciprocal function has Shape 1.
c) $y=2 x^{2}-4 x-6$ and $y=\frac{1}{2 x^{2}-4 x-6}$

The graph of $y=2 x^{2}-4 x-6$, or $y=2(x-3)(x+1)$ opens up, has x-intercepts 3 and -1 , and vertex $(1,-8)$. The graph of $y=\frac{1}{2 x^{2}-4 x-6}$ has vertical asymptotes $x=3$ and $x=-1$, and a horizontal asymptote $y=0$. Plot points where the lines $y=1$ and $y=-1$ intersect the graph of $y=2(x-3)(x+1)$. These points are common to both graphs.

Point $(1,-8)$ lies on $y=2 x^{2}-4 x-6$, so point $\left(1,-\frac{1}{8}\right)$ lies on $y=\frac{1}{2 x^{2}-4 x-6}$.
The graph of the reciprocal function has
Shape 3.
12. A quadratic function and its reciprocal are graphed on a grid. The horizontal lines $y=1$ and $y=-1$ do not intersect either graph. Sketch a possible graph of the quadratic function and its reciprocal. Explain your strategy.

If the lines $y=1$ and $y=-1$ do not intersect the graph of a quadratic function, the vertex of the graph either lies above the line $y=1$ and opens up, or it lies below the line $y=-1$ and opens down. In either case, the graph of the quadratic function has no x-intercepts and the graph of the corresponding reciprocal function has no vertical asymptotes. Here is the graph of
 $y=x^{2}+3$ and $y=\frac{1}{x^{2}+3}$.
13. A reciprocal function has the form $y=\frac{1}{a x^{2}+b}, a \neq 0, b \neq 0$. How can you determine the number of asymptotes of the graph of $y=\frac{1}{a x^{2}+b}$ when:
a) both a and b are positive?

Look at the quadratic function $y=a x^{2}+b$. When both a and b are positive, the graph opens up and its vertex is above the x-axis.
So, the graph of $y=a x^{2}+b$ has no x-intercepts and the graph of $y=\frac{1}{a x^{2}+b}$ has no vertical asymptotes.
b) both a and b are negative?

Look at the quadratic function $y=a x^{2}+b$. When both a and b are negative, the graph opens down and its vertex is below the x-axis. So, the graph of $y=a x^{2}+b$ has no x-intercepts and the graph of $y=\frac{1}{a x^{2}+b}$ has no vertical asymptotes.
c) a and b have opposite signs?

Look at the quadratic function $y=a x^{2}+b$. When a and b have opposite signs, the graph either opens up with its vertex below the x-axis, or it opens down with its vertex above the x-axis. So, the graph of $y=a x^{2}+b$ has $2 x$-intercepts and the graph of $y=\frac{1}{a x^{2}+b}$ has 2 vertical asymptotes.
14. The reciprocal function $y=\frac{1}{p x^{2}+(2 p+1) x+p}$ has one vertical asymptote. Show that $p=-\frac{1}{4}$.

If the reciprocal function has one vertical asymptote, then the related quadratic function has one x-intercept; that is, the quadratic equation $p x^{2}+(2 p+1) x+p=0$ has equal roots.
The equation has equal roots when $b^{2}-4 a c=0$.
Substitute: $b=2 p+1, a=p, c=p$

$$
\begin{aligned}
(2 p+1)^{2}-4(p)(p) & =0 \\
4 p^{2}+4 p+1-4 p^{2} & =0 \\
4 p+1 & =0 \\
p & =-\frac{1}{4}
\end{aligned}
$$

15. Determine the values of k for which the reciprocal function $y=\frac{1}{x^{2}+k x+4}$ has:
a) no vertical asymptotes

The reciprocal function has no vertical asymptotes, so the related quadratic function has no x-intercepts; that is, $x^{2}+k x+4=0$ has no real roots. The equation has no real roots when $b^{2}-4 a c<0$.
Substitute: $a=1, b=k, c=4$

$$
\begin{aligned}
k^{2}-4(1)(4) & <0 \\
k^{2}-16 & <0 \\
k^{2} & <16 \\
-4 & <k<4
\end{aligned}
$$

b) one vertical asymptote

The reciprocal function has one vertical asymptote, so the related quadratic function has one x-intercept; that is, $x^{2}+k x+4=0$ has equal roots. The equation has equal roots when $b^{2}-4 a c=0$.
Substitute: $a=1, b=k, c=4$
$k^{2}-4(1)(4)=0$

$$
\begin{aligned}
k^{2}-16 & =0 \\
k^{2} & =16 \\
k & =4 \text { or } k=-4
\end{aligned}
$$

c) two vertical asymptotes

The reciprocal function has two vertical asymptotes, so the related quadratic function has two x-intercepts; that is, $x^{2}+k x+4=0$ has 2 real roots. The equation has 2 real roots when $b^{2}-4 a c>0$.

$$
\text { Substitute: } a=1, b=k, c=4
$$

$\boldsymbol{k}^{2}-4(1)(4)>0$

$$
k^{2}-16>0
$$

$$
k^{2}>16
$$

$$
k<-4 \text { or } k>4
$$

16. Determine the equation of each quadratic function $y=f(x)$ you graphed in question 9. Describe your strategies.
a) The graph has vertex $(-5,0)$ and passes through the point $(-6,-1)$.

So, the equation has the form: $y=a(x+5)^{2}$
Substitute: $x=-6, y=-1$
$-1=a(-6+5)^{2}$
$-1=a$
The equation of the quadratic function is $y=-(x+5)^{2}$.
b) The graph has vertex $(0,-4)$ and passes through the point $(1,0)$.

So, the equation has the form: $y=a x^{2}-4$
Substitute: $x=1, y=0$
$0=a(1)^{2}-4$
$4=a$
The equation of the quadratic function is $y=4 x^{2}-4$.
c) The graph has vertex $(-6,1)$ and passes through the point $(-5,2)$.

So, the equation has the form: $y=a(x+6)^{2}+1$
Substitute: $x=-5, y=2$
$2=a(-5+6)^{2}+1$
$1=a$
The equation of the quadratic function is $y=(x+6)^{2}+1$.
d) The graph has vertex $(5,0)$ and passes through the point $(4,1)$.

So, the equation has the form: $y=a(x-5)^{2}$
Substitute: $x=4, y=1$
$1=a(4-5)^{2}$
$1=a$
The equation of the quadratic function is $y=(x-5)^{2}$.

