Checkpoint: Assess Your Understanding, pages 648-651

8.1

1. Multiple Choice Which statement about $y=-4 x+8$ and $y=|-4 x+8|$ is false?
A. Both functions have the same x-intercept.
B. Both functions have the same y-intercept.
C. Both functions have the same domain.
(D.) Both functions have the same range.
2. Sketch a graph of each absolute function.

Identify the intercepts, domain, and range.
a) $y=|-5 x+10|$
b) $y=\left|x^{2}+6 x+8\right|$

Draw the graph of $y=-5 x+10$.
It has x-intercept 2 and y-intercept 10 .
Reflect, in the x-axis, the part of the graph that is below the x-axis.
The x-intercept is 2 and the y-intercept is 10 . The domain of $y=|-5 x+10|$ is $x \in \mathbb{R}$, and the range is $y \geq 0$.

Draw the graph of: $y=x^{2}+6 x+8$

$$
y=(x+2)(x+4)
$$

The graph opens up and has x-intercepts -4 and -2 . The axis of symmetry is $x=\frac{-4-2}{2}$, or -3 and the vertex is at $(-3,-1)$. Reflect, in the x-axis, the part of the graph that is below the x-axis.
From the graph, the x-intercepts are -4 and -2 , and the y-intercept is 8 . The domain of $y=\left|x^{2}+6 x+8\right|$ is $x \in \mathbb{R}$ and the range is $y \geq 0$.
3. Write each absolute value function in piecewise notation.

$$
\begin{gathered}
\text { a) } y=|2 x-7| \\
y=2 x-7 \text { when } \\
2 x-7 \geq 0 \\
x \geq \frac{7}{2} \\
y=-(2 x-7), \\
\text { or } y=-2 x+7 \text { when } \\
2 x-7<0 \\
x<\frac{7}{2}
\end{gathered}
$$

So, using piecewise notation:
$y=\left\{\begin{array}{l}2 x-7, \text { if } x \geq \frac{7}{2} \\ -2 x+7, \text { if } x<\frac{7}{2}\end{array}\right.$
b) $y=\left|(x+4)^{2}-1\right|$

Determine the x-intercepts of the graph of $y=(x+4)^{2}-1$.

$$
0=(x+4)^{2}-1
$$

$(x+4)^{2}=1$
$x=-3$ or $x=-5$
The graph opens up, so between the x-intercepts, the graph is below the x-axis.
For the graph of $y=(x+4)^{2}-1$:
For $x \leq-5$ or $x \geq-3$, the value of $(x+4)^{2}-1 \geq 0$
For $-5<x<-3$, the value of $(x+4)^{2}-1<0 ;$
that is, $y=-\left((x+4)^{2}-1\right)$, or
$y=-(x+4)^{2}+1$
So, using piecewise notation:
$y=\left\{\begin{array}{c}(x+4)^{2}-1, \text { if } x \leq-5 \text { or } x \geq-3 \\ -(x+4)^{2}+1, \text { if }-5<x<-3\end{array}\right.$

8.2

4. Multiple Choice How many solutions does the equation $\left|x^{2}+x-9\right|=6$ have?
A. 1 solution
B. 2 solutions
C. 3 solutions
D. 4 solutions
5. Use the graphs to determine the solutions of each equation.
a) $|2 x-4|=6$
b) $5=\left|-2(x-1)^{2}+3\right|$

The line $y=6$ intersects $y=|2 x-4|$ at 2 points: $(-1,6)$ and $(5,6)$. So, the solutions are $x=-1$ and $x=5$.

The line $y=5$ intersects $y=\left|-2(x-1)^{2}+3\right|$ at 2 points: $(-1,5)$ and $(3,5)$. So, the solutions are $x=-1$ and $x=3$.
6. Solve by graphing.
a) $7=|2 x-7|$
b) $\left|(x-1)^{2}-4\right|=5$

To graph $y=|2 x-7|$, graph $y=2 x-7$, then reflect, in the x-axis, the part of the graph that is below the x-axis. The line $y=7$ intersects $y=|2 x-7|$ at $(0,7)$ and $(7,7)$. So, the solutions are $x=0$ and $x=7$.

Enter $y=\left|(x-1)^{2}-4\right|$ and $y=5$ in the graphing calculator. The line $y=5$ intersects $y=\left|(x-1)^{2}-4\right|$ at 2 points: $(-2,5)$ and $(4,5)$. So, the equation has 2 solutions: $x=-2$ and $x=4$.
7. Use algebra to solve each equation.
a) $9=|-2 x+6|$

$$
\begin{aligned}
& -2 x+6=9 \\
& \text { if }-2 x+6 \geq 0 \\
& \text { that is, if } x \leq 3 \\
& \text { When } x \leq 3: \\
& -2 x+6=9 \\
& -2 x=3 \\
& x=-\frac{3}{2}, \text { or }-1.5
\end{aligned}
$$

$-1.5 \leq 3$, so this root
is a solution.

$$
\begin{aligned}
& -(-2 x+6)=9 \\
& \text { if }-2 x+6<0 \\
& \text { that is, if } x>3 \\
& \text { When } x>3 \text { : } \\
& \begin{aligned}
-(-2 x+6) & =9 \\
-2 x+6 & =-9 \\
-2 x & =-15 \\
x & =\frac{15}{2}, \text { or } 7.5
\end{aligned}
\end{aligned}
$$

$7.5>3$, so this root is a solution.

The solutions are $x=-1.5$ and $x=7.5$.
b) $\left|x^{2}-4 x-5\right|=7$

$$
\begin{aligned}
& \text { When } x^{2}-4 x-5 \geq 0: \\
& \qquad \begin{aligned}
x^{2}-4 x-5 & =7 \\
x^{2}-4 x-12 & =0 \\
(x-6)(x+2) & =0 \\
x & =6 \text { or } x=-2 \\
& -\left(x^{2}-4 x-5\right)=7 \\
& -x^{2}+4 x+5=7 \\
& -x^{2}+4 x-2=0 \\
& x^{2}-4 x+2=0 \\
x & =\frac{4 \pm \sqrt{(-4)^{2}-4(1)(2)}}{2(1)} \\
& x=\frac{4 \pm \sqrt{8}}{2} \\
& x=\frac{4 \pm 2 \sqrt{2}}{2} \\
& x=2 \pm \sqrt{2}
\end{aligned}
\end{aligned}
$$

So, $x=6, x=-2, x=2+\sqrt{2}$, and $x=2-\sqrt{2}$ are the solutions.

