Checkpoint: Assess Your Understanding, pages 648–651

8.1

1. Multiple Choice Which statement about y = -4x + 8 and y = |-4x + 8| is false?

A. Both functions have the same *x*-intercept.

B. Both functions have the same *y*-intercept.

C. Both functions have the same domain.

D, Both functions have the same range.

2. Sketch a graph of each absolute function. Identify the intercepts, domain, and range.

Draw the graph of y=-5x+10.It has *x*-intercept 2 and y-intercept 10. Reflect, in the *x*-axis, the part of the graph that is below the *x*-axis.

The *x*-intercept is 2 and the y-intercept is 10. The domain of y = |-5x + 10| is $x \in \mathbb{R}$, and the range is $y \ge 0$.

Draw the graph of: $y = x^2 + 6x + 8$ y = (x + 2)(x + 4)The graph opens up and has *x*-intercepts -4 and -2. The axis of symmetry is $x = \frac{-4-2}{2}$, or -3 and the vertex is at (-3, -1). Reflect, in the x-axis, the part of the graph that is below the x-axis. From the graph, the *x*-intercepts are

-4 and -2, and the *y*-intercept is 8. The domain of $y = |x^2 + 6x + 8|$ is $x \in \mathbb{R}$ and the range is $y \ge 0$.

3. Write each absolute value function in piecewise notation.

a)
$$y = |2x - 7|$$

 $y = 2x - 7$ when
 $2x - 7 \ge 0$
 $x \ge \frac{7}{2}$
 $y = -(2x - 7),$
or $y = -2x + 7$ when
 $2x - 7 < 0$
 $x < \frac{7}{2}$
So, using piecewise notation:
 $y = \begin{cases} 2x - 7, \text{ if } x \ge \frac{7}{2} \\ -2x + 7, \text{ if } x < \frac{7}{2} \end{cases}$
b) $y = |(x + 4)^2 - 1|$
Determine the *x*-intercepts of
the graph of $y = (x + 4)^2 - 1$.
 $0 = (x + 4)^2 - 1$
 $(x + 4)^2 = 1$
 $x = -3 \text{ or } x = -5$
The graph opens up, so between
the *x*-intercepts, the graph is below
the *x*-axis.
For the graph of $y = (x + 4)^2 - 1$:
For $x \le -5$ or $x \ge -3$, the value of
 $(x + 4)^2 - 1 \ge 0$
For $-5 < x < -3$, the value of
 $(x + 4)^2 - 1 < 0$;
that is, $y = -((x + 4)^2 - 1)$, or
 $y = -(x + 4)^2 + 1$
So, using piecewise notation:
 $y = \begin{cases} (x + 4)^2 - 1, \text{ if } x \le -5 \text{ or } x \ge --2 \\ -(x + 4)^2 + 1, \text{ if } -5 < x < -3 \end{cases}$

-3

8.2

- **4.** Multiple Choice How many solutions does the equation $|x^2 + x 9| = 6$ have?
 - A. 1 solution B. 2 solutions C. 3 solutions (D. 4 solutions
- **5.** Use the graphs to determine the solutions of each equation.

a)
$$|2x - 4| = 6$$

The line y = 6 intersects y = |2x - 4| at 2 points: (-1, 6) and (5, 6). So, the solutions are x = -1 and x = 5.

The line y = 5 intersects $y = |-2(x - 1)^2 + 3|$ at 2 points: (-1, 5) and (3, 5). So, the solutions are x = -1 and x = 3.

6. Solve by graphing.

To graph y = |2x - 7|, graph y = 2x - 7, then reflect, in the *x*-axis, the part of the graph that is below the *x*-axis. The line y = 7intersects y = |2x - 7|at (0, 7) and (7, 7). So, the solutions are x = 0 and x = 7.

b)
$$|(x - 1)^2 - 4| = 5$$

Enter $y = |(x - 1)^2 - 4|$ and y = 5 in the graphing calculator. The line y = 5 intersects $y = |(x - 1)^2 - 4|$ at 2 points: (-2, 5) and (4, 5). So, the equation has 2 solutions: x = -2and x = 4. **7.** Use algebra to solve each equation.

a)
$$9 = |-2x + 6|$$

 $-2x + 6 = 9$
if $-2x + 6 \ge 0$
that is, if $x \le 3$
When $x \le 3$:
 $-2x + 6 = 9$
 $-2x = 3$
 $x = -\frac{3}{2}$, or -1.5
 $-1.5 \le 3$, so this root
is a solution.
 $-(-2x + 6) = 9$
 $-(-2x + 6) = 9$
 $-(-2x + 6) = 9$
 $-2x = -15$
 $x = \frac{15}{2}$, or 7.5
 $-5 \ge 3$, so this root
is a solution.
 $-(-2x + 6) = 9$
 $-2x = -15$
 $x = \frac{15}{2}$, or 7.5
 $-5 \ge 3$, so this root
is a solution.
 $-(-2x + 6) = 9$
 $-2x = -15$
 $x = \frac{15}{2}$, or 7.5
 $-(-2x + 6) = 9$
 $-2x = -15$
 $x = \frac{15}{2}$, or 7.5
 $-(-2x + 6) = 9$
 $-2x = -15$
 $x = \frac{15}{2}$, or 7.5
 $-(-2x + 6) = 9$
 $-(-2x - 15)$
 $x = \frac{15}{2}$, or 7.5
 $-(-2x - 15)$
 $x = \frac{15}{2}$, or 7.5
 $-(-2x - 15)$
 $x = 15$
 $-(-2x - 15)$
 $-(-2$

The solutions are x = -1.5 and x = 7.5.

b)
$$|x^2 - 4x - 5| = 7$$

When
$$x^2 - 4x - 5 \ge 0$$
:
 $x^2 - 4x - 5 \ge 7$
 $x^2 - 4x - 12 \ge 0$
 $(x - 6)(x + 2) \ge 0$
 $x = 6 \text{ or } x = -2$
When $x^2 - 4x - 5 < 0$:
 $-(x^2 - 4x - 5) \ge 7$
 $-x^2 + 4x + 5 \ge 7$
 $-x^2 + 4x - 2 \ge 0$
 $x^2 - 4x + 2 \ge 0$
 $x = \frac{4 \pm \sqrt{(-4)^2 - 4(1)(2)}}{2(1)}$
 $x = \frac{4 \pm \sqrt{8}}{2}$
 $x = \frac{4 \pm 2\sqrt{2}}{2}$
 $x = 2 \pm \sqrt{2}$

So, x = 6, x = -2, $x = 2 + \sqrt{2}$, and $x = 2 - \sqrt{2}$ are the solutions.