REVIEW, pages 692-697

8.1

1. Sketch a graph of each absolute function.

Identify the intercepts, domain, and range.
a) $y=|-4 x+2|$
b) $y=|(x+4)(x-2)|$

Draw the graph of $y=-4 x+2$.
It has x-intercept 0.5.
Reflect, in the x-axis, the part of the graph that is below the x-axis.
From the graph, the x-intercept is 0.5 , the y-intercept is 2 , the domain of $y=|-4 x+2|$ is $x \in \mathbb{R}$, and the range is $y \geq 0$.

Draw the graph of $y=(x+4)(x-2)$. It has x-intercepts -4 and 2 . The axis of symmetry is $x=-1$, so the vertex is at $(-1,-9)$.
Reflect, in the x-axis, the part of the graph that is below the x-axis. From the graph, the x-intercepts are -4 and 2 , the y-intercept is 8 , the domain of $y=|(x+4)(x-2)|$ is $x \in \mathbb{R}$, and the range is $y \geq 0$.
2. Write each absolute value function in piecewise notation.
a) $y=|-x-9|$
$y=-x-9$ when
$-x-9 \geq 0$

$$
-x \geq 9
$$

$$
x \leq-9
$$

$$
y=-(-x-9)
$$

$$
\text { or } y=x+9 \text { when }
$$

$$
-x-9<0
$$

$$
-x<9
$$

$$
x>-9
$$

So, using piecewise notation:
$y= \begin{cases}-x-9, & \text { if } x \leq-9 \\ x+9, & \text { if } x>-9\end{cases}$
b) $y=|2 x(x+5)|$

The x-intercepts of the graph of $y=2 x(x+5)$ are $x=0$ and $x=-5$. The graph opens up, so between the x-intercepts, the graph is below the x-axis. For the graph of $y=|2 x(x+5)|$:
For $x \leq-5$ or $x \geq 0$, the value of $2 x(x+5) \geq 0$
For $-5<x<0$, the value of $2 x(x+5)<0$; that is, $y=-2 x(x+5)$.
So, using piecewise notation:
$y= \begin{cases}2 x(x+5), & \text { if } x \leq-5 \text { or } x \geq 0 \\ -2 x(x+5), & \text { if }-5<x<0\end{cases}$

8.2

3. Solve by graphing.
a) $3=|-2 x+4|$

b) $\left|x^{2}-5 x\right|=6$

To graph $y=|-2 x+4|$, graph $y=-2 x+4$, then reflect, in the x-axis, the part of the graph that is below the x-axis. The line $y=3$ intersects $y=|-2 x+4|$ at (0.5, 3) and (3.5, 3). So, the solutions are $x=0.5$ and $x=3.5$.

Enter $y=\left|x^{2}-5 x\right|$ and $y=6$ in the graphing calculator. The line $y=6$ appears to intersect $y=\left|x^{2}-5 x\right|$ at 4 points: $(-1,6),(2,6),(3,6)$, and $(6,6)$.
So, the equation has 4 solutions: $x=-1, x=2, x=3$, and $x=6$
4. Use algebra to solve each equation.
a) $2=\left|(x-1)^{2}-2\right|$

When $(x-1)^{2}-2 \geq 0$: When $(x-1)^{2}-2<0$:
$2=(x-1)^{2}-2 \quad 2=-\left((x-1)^{2}-2\right)$
$4=(x-1)^{2}$
$-2=(x-1)^{2}-2$
$x=3$ or $x=-1$

$$
0=(x-1)^{2}
$$

$x=1$
So, $x=-1, x=1$, and $x=3$ are the solutions.
b) $2 x=\frac{1}{2}|3 x-5|$
$4 x=|3 x-5|$
$4 x=3 x-5 \quad 4 x=-(3 x-5)$
if $3 x-5 \geq 0$
if $3 x-5<0$
that is, if $x \geq \frac{5}{3}$
that is, if $x<\frac{5}{3}$
When $x \geq \frac{5}{3}$:
When $x<\frac{5}{3}$:
$4 x=3 x-5$
$4 x=-(3 x-5)$
$x=-5$
$4 x=-3 x+5$
$7 x=5$
$x=\frac{5}{7}$
-5 is not greater than or equal to $\frac{5}{3}$, so -5 is not a solution.
$\frac{5}{7}<\frac{5}{3}$ so $\frac{5}{7}$ is a root.
The solution is $x=\frac{5}{7}$.

8.3

5. Identify the equation of the vertical asymptote of the graph of $y=\frac{1}{-2 x+5}$, then graph the function.

The graph of $y=-2 x+5$ has slope $-2, x$-intercept $\frac{5}{2}$, and y-intercept 5 .
The graph of $y=\frac{1}{-2 x+5}$ has a horizontal asymptote $y=0$ and a vertical asymptote $x=\frac{5}{2}$. Points $(3,-1)$ and $(2,1)$ are common to both graphs. Some points on $y=-2 x+5$ are (1, 3), $(0,5),(4,-3)$, and $(5,-5)$.
So, points on $y=\frac{1}{-2 x+5}$ are $\left(1, \frac{1}{3}\right),(0,0.2),\left(4,-\frac{1}{3}\right)$, and $(5,-0.2)$.

6. Use the graph of $y=f(x)$ to sketch a graph of $y=\frac{1}{f(x)}$.

Identify the equations of the asymptotes of the graph of each reciprocal function.
a)

Horizontal asymptote: $y=0$ x-intercept is $\frac{1}{2}$, so vertical asymptote is $x=\frac{1}{2}$. Points $(0,1)$ and $(1,-1)$ are common to both graphs. Some points on $y=f(x)$ are: $(-1,3)$ and

Horizontal asymptote: $y=0$ x-intercept is 6 , so vertical asymptote is $x=6$. Points $(7,1)$ and $(5,-1)$ are common to both graphs. Some points on $y=f(x)$ are: $(8,2)$ and $(4,-2)$. So, points on $y=\frac{1}{f(x)}$ are $(8,0.5)$ and $(4,-0.5)$.
$(2,-3)$. So, points on $y=\frac{1}{f(x)}$
are $\left(-1, \frac{1}{3}\right)$ and $\left(2,-\frac{1}{3}\right)$.
7. Use the graph of $y=\frac{1}{f(x)}$ to graph the linear function $y=f(x)$.

Describe your strategy.

Vertical asymptote is $x=1.5$, so graph of $y=f(x)$ has x-intercept 1.5. Mark points at $y=1$ and $y=-1$ on graph of $y=\frac{1}{f(x)}$, then draw a line through these points for the graph of $y=f(x)$.

8.4

8. Use a graphing calculator or graphing software.

For which values of q does the graph of
$y=\frac{1}{-(x-3)^{2}+q}$ have:
a) no vertical asymptotes?

Look at the quadratic function $y=-(x-3)^{2}+q$. The graph opens down. For the graph of its reciprocal function to have no vertical asymptotes, the quadratic function must have no x-intercepts. So, the vertex of the quadratic function must be below the x-axis; that is, $q<0$.
b) one vertical asymptote?

Look at the quadratic function $y=-(x-3)^{2}+q$. The graph opens down. For the graph of its reciprocal function to have one vertical asymptote, the quadratic function must have one x-intercept. So, the vertex of the quadratic function must be on the x-axis; that is, $q=0$.
c) two vertical asymptotes?

Look at the quadratic function $y=-(x-3)^{2}+q$. The graph opens down. For the graph of its reciprocal function to have two vertical asymptotes, the quadratic function must have two x-intercepts. So, the vertex of the quadratic function must be above the x-axis; that is, $q>0$.
9. Determine the equations of the vertical asymptotes of the graph of each reciprocal function.
Graph to check the equations.
a) $y=\frac{1}{(x-2)^{2}-9}$
b) $y=\frac{1}{-(x-2)^{2}-9}$
$(x-2)^{2}-9=0$ when
$-(x-2)^{2}-9=0$ when
$(x-2)^{2}=9$; that is, when
$(x-2)^{2}=-9$. Since the square $x=5$ or $x=-1$. So, the graph of $y=\frac{1}{(x-2)^{2}-9}$ has 2 vertical asymptotes, $x=5$ and $x=-1$. 1 used my graphing calculator to show that my equations are correct.
the graph of $y=-(x-2)^{2}-9$ has no x-intercepts, and the graph of $y=\frac{1}{-(x-2)^{2}-9}$ has no vertical asymptotes. I used my graphing calculator to show that my equations are correct.

8.5

10. On the graph of each quadratic function $y=f(x)$, sketch a graph of the reciprocal function $y=\frac{1}{f(x)}$. Identify the vertical asymptotes, if they exist.
a)

b)

The graph of $y=f(x)$ has no x-intercepts, so the graph of $y=\frac{1}{f(x)}$ has no vertical asymptotes and has Shape 1. Horizontal asymptote: $y=0$ Points $(2,-4),(3,-2)$, and $(4,-4)$ lie on $y=f(x)$, so points ($2,-0.25$), ($3,-0.5$), and $(4,-0.25)$ lie on $y=\frac{1}{f(x)}$.
11. On the graph of each reciprocal function $y=\frac{1}{f(x)}$, sketch a graph of the quadratic function $y=f(x)$.
a)

The graph has one vertical asymptote, $x=5$, so the graph of $y=f(x)$ has vertex $(5,0)$. The line $y=-1$ intersects the graph at 2 points that are common to both graphs.
b)

The graph has 2 vertical asymptotes, so the graph of $y=f(x)$ has $2 x$-intercepts. Plot points where the asymptotes intersect the x-axis. The point $(0,-1)$ is on the line of symmetry, so $(0,-1)$ is the vertex of $y=f(x)$.

