Lesson 1.4 Exercises, pages 46-54

A
3. Which functions are polynomial functions? Justify your choices.
a) $f(x)=2 \sqrt{x}-x^{2}$

Not a polynomial function: $\sqrt{x}=x^{\frac{1}{2}}$ and $\frac{1}{2}$ is not a whole number.
b) $g(x)=6 x^{3}-x^{2}+3 x-7$

Polynomial function: the coefficients of the variables are real numbers and all exponents are whole numbers.
c) $h(x)=7 x^{2}+2 x^{3}-x-\frac{1}{2}$

Polynomial function: the coefficients of the variables are real numbers and all exponents are whole numbers.
d) $k(x)=3^{x}+5$

Not a polynomial function: the variable x is an exponent.
e) $p(x)=5 x^{2}-7 x+\frac{2}{x}$

Not a polynomial function: $\frac{2}{x}=2 x^{-1}$ and the exponent is not a whole number.
4. Which graphs are graphs of polynomial functions? Justify your answers.
a)

b)

No, graph has sharp corners.
Yes, graph is smooth and continuous and has a possible shape for an odd-degree polynomial function.
c)

d)

No, graph is not continuous.
Yes, graph is smooth and continuous and has a possible shape for an odd-degree polynomial function.
5. Complete the table below. The first row has been done for you.

			Odd or Even Degree	Type	Leading coefficient	y-intercept of its graph
	$f(x)=3 x^{2}-2 x+1$	2	even	quadratic	3	1
a)	$g(x)=5 x+x^{5}-2 x^{3}$	5	odd	quintic	1	0
b)	$h(x)=2 x^{2}-3 x^{3}-7$	3	odd	cubic	-3	-7
c)	$k(x)=5-x^{4}-3 x$	4	even	quartic	-1	5

B
6. Use a table of values to sketch the graph of each polynomial function.
a) $f(x)=x^{3}-7 x+6$

The equation represents an odd-degree polynomial function. The leading coefficient is positive, so as $x \rightarrow-\infty$, the graph falls and as $x \rightarrow \infty$, the graph rises. The constant term is 6 , so the y-intercept is 6 .

x	$f(x)$
-3	0
-2	12
-1	12
0	6
1	0
2	0
3	12

b) $g(x)=-x^{4}+5 x^{2}-4$

The equation represents an even-degree polynomial function. The leading coefficient is negative, so the graph opens down. The constant term is -4 , so the y-intercept is -4 .

x	$g(x)$
-3	-40
-2	0
-1	0
0	-4
1	0
2	0
3	-40

7. Use intercepts to sketch the graph of each polynomial function.
a) $f(x)=2 x^{3}+3 x^{2}-2 x$

Factor.
$f(x)=x\left(2 x^{2}+3 x-2\right)$
$f(x)=x(x+2)(2 x-1)$
Determine the zeros of $f(x)$. Let $f(x)=0$.
$0=x(x+2)(2 x-1)$
The zeros are: $0,-2, \frac{1}{2}$
So, the x-intercepts of the graph are: $0,-2, \frac{1}{2}$
The equation has degree 3 , so it is an odd-degree polynomial function. The leading coefficient is positive, so as $x \rightarrow-\infty$, the graph falls and as $x \rightarrow \infty$, the graph rises.
The constant term is 0 , so the y-intercept is 0 .
b) $h(x)=2 x^{4}+7 x^{3}+4 x^{2}-7 x-6$

Factor the polynomial. Use the factor theorem.
The factors of the constant term, -6 , are: $1,-1,2,-2,3,-3,6,-6$
Use mental math to substitute $x=1$, then $x=-1$ in $h(x)$ to determine that both $x-1$ and $x+1$ are factors.
Divide by $x-1$.
$1 \begin{array}{rlrrrr}2 & 7 & 4 & -7 & -6 \\ & 2 & 9 & 13 & 6 \\ & 2 & 9 & 13 & 6 & 0\end{array}$
So, $2 x^{4}+7 x^{3}+4 x^{2}-7 x-6=(x-1)\left(2 x^{3}+9 x^{2}+13 x+6\right)$
Divide $2 x^{3}+9 x^{2}+13 x+6$ by $x+1$.

So, $2 x^{4}+7 x^{3}+4 x^{2}-7 x-6=(x-1)(x+1)\left(2 x^{2}+7 x+6\right)$
Factor the trinomial: $2 x^{2}+7 x+6=(2 x+3)(x+2)$
So, $2 x^{4}+7 x^{3}+4 x^{2}-7 x-6=(x-1)(x+1)(2 x+3)(x+2)$
Determine the zeros of $h(x)$. Let $h(x)=0$.
$0=(x-1)(x+1)(2 x+3)(x+2)$
The zeros are: $1,-1,-1.5,-2$
So, the x-intercepts of the graph are: $1,-1,-1.5,-2$
The equation has degree 4 , so it is an even-degree polynomial function. The leading coefficient is positive, so the graph opens up. The constant term is -6 , so the y-intercept is -6 .
8. Identify the graph that corresponds to each function. Justify your choices.
a) $f(x)=-x^{3}+3 x^{2}+x-3$
b) $g(x)=x^{4}-3 x^{2}-3$

Odd degree, negative leading coefficient: graph B

Even degree, positive leading coefficient: graph D
c) $h(x)=x^{5}+3 x^{3}-3$

Odd degree, positive leading coefficient: graph A
d) $k(x)=-x^{2}+4 x-3$

Even degree, negative leading coefficient: graph C

i) Graph A

ii) Graph B

iii) Graph C

iv) Graph D

9. Determine the zeros of each polynomial function. State the multiplicity of each zero. How does the graph of each function behave at the related x-intercepts?
Use graphing technology to check.
a) $f(x)=(x+3)^{3}$
$0=(x+3)^{3}$
b) $g(x)=(x-2)^{2}(x+3)^{2}$
$0=(x-2)^{2}(x+3)^{2}$

Root of the equation: $x=-3$
Zero of the function: -3
The zero has multiplicity 3.
So, the graph crosses the x-axis at $x=-3$.

Roots of the equation: $x=2$ and $x=-3$
Zeros of the function: 2 and -3
The zero 2 has multiplicity 2.
The zero -3 has multiplicity 2 .
So, the graph just touches the x-axis
at $x=2$ and at $x=-3$.
c) $h(x)=(x-1)^{4}(2 x+1)$
d) $j(x)=(x-4)^{3}(x+1)^{2}$
$0=(x-1)^{4}(2 x+1)$
Roots of the equation: $x=1$
and $x=-0.5$
Zeros of the function: 1 and -0.5
The zero 1 has multiplicity 4.
The zero -0.5 has multiplicity 1.
So, the graph just touches the x-axis at $x=1$ and crosses the x-axis at $x=-0.5$.
$0=(x-4)^{3}(x+1)^{2}$
Roots of the equation: $x=4$ and $x=-1$
Zeros of the function: 4 and -1
The zero 4 has multiplicity 3.
The zero -1 has multiplicity 2.
So, the graph crosses the x-axis at $x=4$ and just touches the x-axis at $x=-1$.
10. Sketch the graph of this polynomial function.
$h(x)=(x+1)^{2}(x-1)(x+2)$
To determine the roots, let $h(x)=0$.
$0=(x+1)^{2}(x-1)(x+2)$
Zeros of the function: $-1,1$, and -2 The zero -1 has multiplicity 2.
The zeros 1 and -2 have multiplicity 1 . So, the graph just touches the x-axis at $x=-1$ and crosses the x-axis at $x=1$ and at $x=-2$.
The equation has degree 4 , so it is an even-degree polynomial function.
The leading coefficient is positive,
so the graph opens up. The y-intercept is:
$(1)^{2}(-1)(2)=-2$
11. a) Write an equation in standard form for each polynomial function described below.
i) a cubic function with zeros $3,-3$, and 0

Sample response:
The zeros of the function are the roots of its equation.
$y=x(x-3)(x+3)$
$y=x\left(x^{2}-9\right)$
$y=x^{3}-9 x$
ii) a quartic function with zeros -2 and 1 of multiplicity 1 , and a zero 2 of multiplicity 2

Sample response:
The zeros of the function are the roots of its equation.
$y=(x+2)(x-1)(x-2)^{2}$
$y=\left(x^{2}+x-2\right)\left(x^{2}-4 x+4\right)$
$y=x^{4}-4 x^{3}+4 x^{2}+x^{3}-4 x^{2}+4 x-2 x^{2}+8 x-8$
$y=x^{4}-3 x^{3}-2 x^{2}+12 x-8$
b) Is there more than one possible equation for each function in part a? Explain.

Yes, if I multiply the polynomial by a constant factor, I don't change the zeros but I do change the equation.
12. Sketch a possible graph of each polynomial function.
a) cubic function; leading coefficient is positive; zero of 4 has multiplicity 3

The zero has multiplicity 3 , so the graph crosses the x-axis at $x=4$. Since the function is cubic, there are no more zeros. The leading coefficient is positive so as $x \rightarrow-\infty$, the graph falls and as $x \rightarrow \infty$, the graph rises.
b) quintic function; leading coefficient is positive; zero of 3 has multiplicity 2 ; zero of -2 has multiplicity 2 ; zero of -4 has multiplicity 1

Each of the zeros 3 and -2 has multiplicity 2 , so the graph just touches the x-axis at $x=3$ and $x=-2$. The zero -4 has multiplicity 1 , so the graph crosses the x-axis at $x=-4$. Since the function is quintic, there are no more zeros. The leading coefficient is positive, so as $x \rightarrow-\infty$, the graph falls and as $x \rightarrow \infty$, the graph rises.
c) quartic function; leading coefficient is negative; zero of -4 has multiplicity 3 ; zero of 3 has multiplicity 1

The zero -4 has multiplicity 3 , so the graph crosses the x-axis at $x=-4$. The zero 3 has multiplicity 1 , so the graph crosses the x-axis at $x=3$. Since the function is quartic, there are no more zeros. The leading coefficient is negative, so the graph opens down.

13. A cubic function has zeros 2,3 , and -1 . The y-intercept of its graph is -18 . Sketch the graph, then determine an equation of the function.

The zeros of the function are the roots of its equation.
Let k represent the leading coefficient.
$y=k(x-2)(x-3)(x+1)$
The constant term in the equation is -18 .
So, $k(-2)(-3)(1)=-18$

$$
k=-3
$$

So, an equation is:
$y=-3(x-2)(x-3)(x+1)$
$y=-3\left(x^{2}-5 x+6\right)(x+1)$
$y=-3 x^{3}+12 x^{2}-3 x-18$

14. Investigate pairs of graphs of even-degree polynomial functions of the form shown below for different values of the variables a, b, c, and $d \in \mathbb{Z}$. Describe one graph as a transformation image of the other graph. What conclusions can you make?
$h(x)=(x+a)(x+b)(x+c)(x+d)$ and
$k(x)=(x-a)(x-b)(x-c)(x-d)$
Sample response:

The graph of
$k(x)=(x-1)(x-2)(x-3)(x-4)$
is the image of the graph of $h(x)=(x+1)(x+2)(x+3)(x+4)$ after a reflection in the y-axis. In general, the graph of $k(x)$ is the image of the graph of $h(x)$ after a reflection in the y-axis.
15. Investigate pairs of graphs of odd-degree polynomial functions of the form shown below for different values of the variables a, b, c, d, and $e \in \mathbb{Z}$. Describe one graph as a transformation image of the other graph. What conclusions can you make?
$h(x)=(x+a)(x+b)(x+c)(x+d)(x+e)$ and $k(x)=(x-a)(x-b)(x-c)(x-d)(x-e)$

Sample response:

The graph of
$k(x)=(x-1)(x-2)(x-3)(x-4)(x-5)$ is the image of the graph of $h(x)=(x+1)(x+2)(x+3)(x+4)(x+5)$ after a rotation of 180° about the origin. In general, the graph of $k(x)$ is the image of the graph of $h(x)$ after a rotation of 180° about the origin.
16. Each of the functions $f(x)=x^{3}-27 x+54$ and $g(x)=x^{3}-27 x-54$ has one zero of multiplicity 2 and one different zero. Use only this information to determine the values of b for which the function $h(x)=x^{3}-27 x+b$ has each number of zeros. Explain your strategy.
a) 3 different zeros

I sketched the graphs.

$$
f(x)=x^{3}-27 x+54
$$

Each of the graphs of $f(x)$ and $g(x)$ just touches the x-axis at the point that corresponds to the zero of multiplicity 2 . The graph of $f(x)$ has y-intercept 54 and the graph of $g(x)$ has y-intercept -54 . So, for the graph of $h(x)$ to have 3 different zeros, the graph of $h(x)$ must lie between the graphs of $f(x)$ and $g(x)$. So, $-54<b<54$
b) 1 zero of multiplicity 1 and no other zeros

For the graph of $h(x)$ to have 1 zero of multiplicity 1 and no other zeros, the graph of $f(x)$ must be translated up or the graph of $g(x)$ must be translated down so that the local minimum point lies above the x-axis or the local maximum point lies below the x-axis. So, $b>54$ or $b<-54$

