Lesson 2.4 Exercises, pages 134-140

A
3. Sketch the graph of each function.
a) $y=\frac{(x-2)(x+1)}{x+1}$
b) $y=\frac{(-2 x+4)(x-2)}{x-2}$

The function is undefined when: $x=-1$
There is a hole at $x=-1$. The function can be written as: $y=x-2, x \neq-1$
The y-coordinate of the hole
is: $y=-3$
Draw an open circle at $(-1,-3)$.
When $x=0, y=-2$
When $y=0, x=2$
Draw the line $y=x-2$ on either side of the hole.

The function is undefined when: $x=2$
There is a hole at $x=2$.
The function can be written as:
$y=-2 x+4, x \neq 2$
The y-coordinate of the hole is:
$y=0$
Draw an open circle at $(2,0)$.
When $x=0, y=4$
Draw the line $y=-2 x+4$ on either side of the hole.
4. Sketch the graph of each function.
a) $y=\frac{x-2}{x+1}$

The function is undefined when:
$x=-1$
There are no common factors, so there are no holes. The vertical asymptote has equation: $x=-1$
There is a horizontal asymptote. The numerator and denominator have equal leading coefficients, so the horizontal asymptote has equation $y=1$.
Close to the asymptotes:

x	-1.01	-0.99	-100	100
y	301	-299	1.03	0.97

Some of the y-values above are approximate.
When $x=0, y=-2$
When $y=0, x=2$
Determine the coordinates
of some other points:
$(-2,4),(-4,2)$
Draw broken lines for the asymptotes. Join the points to form smooth curves.
b) $y=\frac{-2 x+4}{x}$

The function is undefined when: $x=0$
There are no common factors, so there are no holes.
The vertical asymptote has equation: $x=0$
There is a horizontal asymptote. The leading coefficients are -2 and 1 , so the horizontal asymptote has equation $y=-2$. Close to the asymptotes:

x	-0.01	0.01	-100	100
y	-402	398	-2.04	-1.96

When $y=0, x=2$
Determine the coordinates of some other points: $(-4,-3),(-1,-6)$, (1, 2), (4, -1)
Draw broken lines for the asymptotes. Join the points to form smooth curves.

B
5. Sketch the graph of each function, then state the domain.
a) $y=\frac{-4 x}{x^{2}-9}$
$y=\frac{-4 x}{x^{2}-9}$

The function is undefined when: $x= \pm 3$
There are no common factors, so there are no holes.
The vertical asymptotes have equations: $x=-3$ and $x=3$
There is a horizontal asymptote with equation $y=0$.
Close to the asymptotes:

x	-3.01	-2.99	2.99
y	200	-200	200
x	3.01	-100	100
y	-200	0.04	-0.04

Some of the y-values above are approximate.
When $x=0, y=0$
Determine the approximate coordinates of some other points: ($-4,2.3$), ($-2,-1.6$), (2, 1.6), (4, -2.3)
Draw broken lines for the asymptotes. Join the points to form smooth curves.
The domain is: $x \neq \pm 3$
c) $y=\frac{x^{2}+2 x-8}{-x-4}$

$$
y=\frac{x^{2}+2 x-8}{-x-4}
$$

The function is undefined when:
$x=-4$
Factor: $y=\frac{(x+4)(x-2)}{-(x+4)}$
There is a hole at $x=-4$.
The function can be written as:
$y=-x+2, x \neq-4$
The y-coordinate of the hole is:
$y=6$
Draw an open circle at $(-4,6)$,
then draw the line $y=-x+2$ on either side of the hole.
The domain is: $x \neq-4$
d) $y=\frac{2 x^{2}-3 x+1}{x-2}$

$$
y=\frac{2 x^{2}-3 x+1}{x-2}
$$

The function is undefined when:
$x=2$
There are no common factors,
so there are no holes.
The vertical asymptote has equation: $x=2$
There is also an oblique asymptote.
Determine:

$$
\left(2 x^{2}-3 x+1\right) \div(x-2)
$$

2

2	-3	1
	4	2
2	1	3

The quotient is $2 x+1$; so the equation of the oblique asymptote is $y=2 x+1$. Draw broken lines for the asymptotes.
Close to the vertical asymptote:

x	1.99	2.01
y	$\doteq-295$	$\doteq 305$

When $x=0, y=-0.5$
When $y=0,2 x^{2}-3 x+1=0$

$$
\begin{array}{r}
(2 x-1)(x-1)=0 \\
x=0.5 \text { or } x=1
\end{array}
$$

Plot points at $(0,-0.5),(0.5,0)$, and (1,0).
Determine the coordinates of some other points: $(-1,-2)$, $(3,10),(4,10.5)$
Join the points to form smooth curves.
The domain is: $x \neq 2$
6. a) How are these functions different from other functions in this lesson?
i) $y=\frac{x^{2}-1}{x^{3}-x}$
ii) $y=\frac{x^{3}-x}{x^{2}-1}$

Both functions contain x^{3}-terms.
b) Sketch the graph of each function in part a, then state the domain and range.

i) Factor: $y=\frac{(x-1)(x+1)}{x(x-1)(x+1)}$

There are holes at $x= \pm 1$, and an asymptote with equation: $x=0$ The function can be written as: $y=\frac{1}{x^{\prime}} x \neq \pm 1$ The coordinates of the holes are: $(-1,-1)$ and $(1,1)$ Draw open circles at the holes.
Graph $y=\frac{1}{x}$ on either side of each hole.
The domain is: $x \neq \pm 1, x \neq 0$ The range is: $y \neq \pm 1, y \neq 0$

ii) Factor: $y=\frac{x(x-1)(x+1)}{(x-1)(x+1)}$

There are holes at $x= \pm 1$.
The function can be written as:
$y=x, x \neq \pm 1$
The coordinates of the holes are:
$(-1,-1)$ and $(1,1)$
Draw open circles at the holes.
Graph $y=x$ on either side of the
holes.
The domain is: $x \neq \pm 1$
The range is: $y \neq \pm 1$
7. For a rational function, when the degree of the numerator is 2 or more than the degree of the denominator, the graph has no horizontal or oblique asymptotes. Without using graphing technology, determine a strategy to sketch the graph of $y=\frac{x^{3}}{x+2}$ then graph the function. State the domain.

The function is undefined when $x=-2$. Draw a vertical asymptote at $x=-2$.

x	-5	-4	-3	-2.01	-1.99	-1	0	1	2	3	4
y	42	32	27	812	-788	-1	0	0.3	2	5.4	11

Join the points with 2 smooth curves.
The domain is: $x \neq-2$

C
8. Sketch the graph of each function, then state the domain.
a) $y=\frac{x^{2}}{x^{3}-3 x^{2}-x+3}$

The function is undefined when:
$x^{3}-3 x^{2}-x+3=0$
Use the factor theorem.
Let $f(x)=x^{3}-3 x^{2}-x+3$
Use mental math to determine $f(1)=0$ and $f(-1)=0$.
$f(3)=3^{3}-3(3)^{2}-3+3$

$$
=0
$$

So, there are vertical asymptotes with equations:
$x=-1, x=1$, and $x=3$
Since the degree of the numerator is less than the degree of the denominator, there is a horizontal asymptote with equation $y=0$. Close to the asymptotes:

x	-100	-1.01	-0.99	0.99	1.01	2	2.99	3.01	100
y	-0.01	-13	12	25	-26	$-1 . \overline{3}$	-113	112	0.01

When $x=0, y=0$
Determine the approximate coordinates of other points: $(-2,-0.3),(\pm 0.5,0.1)$,
$(4,1.1)$
Draw 4 smooth curves through the points.
The domain is: $x \neq-1, x \neq 1, x \neq 3$
b) $y=\frac{x^{3}-2 x^{2}-x+2}{x^{2}-4}$

The function is undefined when:

$$
\begin{aligned}
x^{2}-4 & =0 \\
x & = \pm 2
\end{aligned}
$$

Factor the numerator. Use the factor theorem. Let $f(x)=x^{3}-2 x^{2}-x+2$
Use mental math to determine $f(1)=0$ and $f(-1)=0$.

$$
f(2)=2^{3}-2(2)^{2}-2+2
$$

$$
y=\frac{x^{3}-2 x^{2}-x+2}{x^{2}-4}
$$

$$
=0
$$

The function is: $y=\frac{(x-1)(x+1)(x-2)}{(x-2)(x+2)}$
There is a hole at $x=2$. The function can be written as:
$y=\frac{(x-1)(x+1)}{(x+2)}, x \neq 2$, or $y=\frac{x^{2}-1}{x+2}, x \neq 2$
There is a vertical asymptote at $x=-2$.
The y-coordinate of the hole is 0.75 .
Since the degree of the numerator is 1 more than the degree of the denominator, there is an oblique asymptote. Determine:
$\left(x^{2}-1\right) \div(x+2)$

$$
\begin{gathered}
-2
\end{gathered} \left\lvert\, \begin{array}{rrr}
1 & 0 & -1 \\
& -2 & 4 \\
& 1 & -2
\end{array}\right.
$$

The quotient is $x-2$; so the equation of the oblique asymptote is $y=x-2$.
Draw broken lines for the asymptotes.
When $x=0, y=-0.5$
When $y=0, x^{2}-1=0$, and $x= \pm 1$
Choose points close to the asymptotes and other points:

x	-4	-3	-2.01	-1.99
y	-7.5	-8	-304	296

Draw an open circle at $(2,0.75)$.
Join the points to form 2 smooth curves.
The domain is: $x \neq \pm 2$

