Α

3. Sketch the graph of each function.

The function is undefined when: x = -1There is a hole at x = -1. The function can be written as: y = x - 2, $x \neq -1$ The y-coordinate of the hole is: y = -3Draw an open circle at (-1, -3). When x = 0, y = -2When y = 0, x = 2Draw the line y = x - 2 on either side of the hole.

4. Sketch the graph of each function.

The function is undefined when:

x = -1

There are no common factors, so there are no holes. The vertical asymptote has equation: x = -1There is a horizontal asymptote. The numerator and denominator have equal leading coefficients, so the horizontal asymptote has equation y = 1. Close to the asymptotes:

x	-1.01	-0.99	-100	100
y	301	-299	1.03	0.97

Some of the *y*-values above are approximate. When x = 0, y = -2When y = 0, x = 2Determine the coordinates of some other points: (-2, 4), (-4, 2)Draw broken lines for the asymptotes. Join the points to form smooth curves. The function is undefined when: x = 0

There are no common factors, so there are no holes. The vertical asymptote has equation: x = 0There is a horizontal asymptote. The leading coefficients are -2 and 1, so the horizontal asymptote has equation y = -2. Close to the asymptotes:

x	-0.01	0.01	-100	100
у	-402	398	-2.04	-1.96

When y = 0, x = 2Determine the coordinates of some other points: (-4, -3), (-1, -6), (1, 2), (4, -1)Draw broken lines for the asymptotes. Join the points to form smooth curves. **5.** Sketch the graph of each function, then state the domain.

The function is undefined when: $x = \pm 3$ There are no common factors, so there are no holes. The vertical asymptotes have equations: x = -3 and x = 3There is a horizontal asymptote with equation y = 0. Close to the asymptotes:

x	-3.01	-2.99	2.99
у	200	-200	200
x	3.01	-100	100

0.04

-0.04

-200

Уİ

Some of the *y*-values above are approximate. When x = 0, y = 0Determine the approximate coordinates of some other points: (-4, 2.3), (-2, -1.6),(2, 1.6), (4, -2.3)Draw broken lines for the asymptotes. Join the points to form smooth curves. The domain is: $x \neq \pm 3$

The function is undefined when: x = 0

There are no common factors, so there are no holes. The vertical asymptote has equation: x = 0There is a horizontal asymptote. The leading coefficients are 1 and -1, so the equation of the horizontal asymptote is y = -1.

Close to the asymptotes:

x	± 0.1	±100
y	899	-0.9991

When y = 0, $x = \pm 3$

Determine the coordinates of some other points: $(\pm 2, 1.25)$ Draw broken lines for the asymptotes. Join the points to form smooth curves. The domain is: $x \neq 0$

c)
$$y = \frac{x^2 + 2x - 8}{-x - 4}$$

The function is undefined when: x = -4

Factor: $y = \frac{(x + 4)(x - 2)}{-(x + 4)}$

There is a hole at x = -4. The function can be written as: y = -x + 2, $x \neq -4$ The y-coordinate of the hole is: y = 6Draw an open circle at (-4, 6), then draw the line y = -x + 2on either side of the hole. The domain is: $x \neq -4$ The function is undefined when: x = 2

There are no common factors, so there are no holes. The vertical asymptote has equation: x = 2There is also an oblique asymptote. Determine: $(2x^2 - 3x + 1) \div (x - 2)$

2	2	-3	1
		4	2
	2	1	3

The quotient is 2x + 1; so the equation of the oblique asymptote is y = 2x + 1. Draw broken lines for the asymptotes.

Close to the vertical asymptote:

x	1.99	2.01
y	≐ − 295	≐305

When x = 0, y = -0.5When y = 0, $2x^2 - 3x + 1 = 0$ (2x - 1)(x - 1) = 0 x = 0.5 or x = 1Plot points at (0, -0.5), (0.5, 0), and (1, 0). Determine the coordinates of some other points: (-1, -2), (3, 10), (4, 10.5)Join the points to form smooth curves. The domain is: $x \neq 2$ **6. a**) How are these functions different from other functions in this lesson?

i) $y = \frac{x^2 - 1}{x^3 - x}$ ii) $y = \frac{x^3 - x}{x^2 - 1}$

Both functions contain *x*³-terms.

b) Sketch the graph of each function in part a, then state the domain and range.

i) Factor: $y = \frac{(x-1)(x+1)}{x(x-1)(x+1)}$ There are holes at $x = \pm 1$, and an asymptote with equation: x = 0The function can be written as: $y = \frac{1}{x}$, $x \neq \pm 1$ The coordinates of the holes are: (-1, -1) and (1, 1)Draw open circles at the holes. Graph $y = \frac{1}{x}$ on either side of each hole. The domain is: $x \neq \pm 1$, $x \neq 0$ The range is: $y \neq \pm 1$, $y \neq 0$

ii) Factor: $y = \frac{x(x-1)(x+1)}{(x-1)(x+1)}$ There are holes at $x = \pm 1$. The function can be written as: $y = x, x \neq \pm 1$ The coordinates of the holes are: (-1, -1) and (1, 1)Draw open circles at the holes. Graph y = x on either side of the holes. The domain is: $x \neq \pm 1$ The range is: $y \neq \pm 1$ **7.** For a rational function, when the degree of the numerator is 2 or more than the degree of the denominator, the graph has no horizontal or oblique asymptotes. Without using graphing

technology, determine a strategy to sketch the graph of $y = \frac{x^3}{x+2}$ then graph the function. State the domain.

Join the points with 2 smooth curves. The domain is: $x \neq -2$

С

8. Sketch the graph of each function, then state the domain.

a)
$$y = \frac{x^2}{x^3 - 3x^2 - x + 3}$$

x = -1, x = 1, and x = 3

The function is undefined when: $x^3 - 3x^2 - x + 3 = 0$ Use the factor theorem. Let $f(x) = x^3 - 3x^2 - x + 3$ Use mental math to determine f(1) = 0 and f(-1) = 0. $f(3) = 3^3 - 3(3)^2 - 3 + 3$ = 0So, there are vertical asymptotes with equations:

Since the degree of the numerator is less than the

degree of the denominator, there is a horizontal asymptote with equation y = 0. Close to the asymptotes:

x	-100	-1.01	-0.99	0.99	1.01	2	2.99	3.01	100
У	-0.01	-13	12	25	-26	- 1.3	-113	112	0.01

When x = 0, y = 0

Determine the approximate coordinates of other points: (-2, -0.3), $(\pm 0.5, 0.1)$, (4, 1.1)Draw 4 smooth curves through the points. The domain is: $x \neq -1$, $x \neq 1$, $x \neq 3$

b)
$$y = \frac{x^3 - 2x^2 - x + 2}{x^2 - 4}$$

The function is undefined when: $x^2 - 4 = 0$

 $x = \pm 2$

Factor the numerator. Use the factor theorem. Let $f(x) = x^3 - 2x^2 - x + 2$ Use mental math to determine f(1) = 0 and f(-1) = 0. $f(2) = 2^3 - 2(2)^2 - 2 + 2$ = 0

The function is: $y = \frac{(x - 1)(x + 1)(x - 2)}{(x - 2)(x + 2)}$

There is a hole at x = 2. The function can be written as:

$$y = \frac{(x-1)(x+1)}{(x+2)}, x \neq 2$$
, or $y = \frac{x^2 - 1}{x+2}, x \neq 2$

There is a vertical asymptote at x = -2.

The *y*-coordinate of the hole is 0.75.

Since the degree of the numerator is 1 more than the degree of the denominator, there is an oblique asymptote. Determine: $(x^2 - 1) \div (x + 2)$

$$\begin{array}{c}
-2 \\
1 \\
-2 \\
1 \\
-2 \\
1 \\
-2 \\
3
\end{array}$$

The quotient is x - 2; so the equation of the oblique asymptote is y = x - 2.

Draw broken lines for the asymptotes.

When x = 0, y = -0.5When y = 0, $x^2 - 1 = 0$, and $x = \pm 1$

Choose points close to the asymptotes and other points:

x	-4	-3	-2.01	-1.99
y	-7.5	-8	-304	296

Draw an open circle at (2, 0.75). Join the points to form 2 smooth curves. The domain is: $x \neq \pm 2$

