Checkpoint: Assess Your Understanding, pages 124–128

2.1

1. Multiple Choice Given the graph of the function y = f(x), which graph below right represents $y = \sqrt{f(x)}$?

- **2.** For each function y = f(x) graphed below:
 - Sketch the graph of $y = \sqrt{f(x)}$.
 - State the domain and range of $y = \sqrt{f(x)}$.
 - Explain why the domains are different and the ranges are different.

Mark points where y=0 or y=1. The graph of $y=\sqrt{f(x)}$ is above the graph of y=f(x) between these points. Choose, then mark other points on the graph of $y=\sqrt{f(x)}$.

$y = \sqrt{t(x)}$ is not defined
for $-2 < x < 6$. Mark points
where $y = 0$ or $y = 1$.
Choose, then mark other
points on the graph of
$y=\sqrt{f(x)}.$

X	y=f(x)	$y=\sqrt{f(x)}$
-3	2	≐ 1.4
0	4	2

X	y = f(x)	$y=\sqrt{f(x)}$
-4	5	≐ 2.2
8	5	≐ 2.2

Join the points with a smooth curve.

Domain is: $x \ge -6$ Range is: $y \ge 0$ Join the points with 2 smooth curves. Domain is: $x \le -2$ or $x \ge 6$ Range is: $y \ge 0$

The domain of a linear function or a quadratic function is all real values of x, but the square root of a negative number is undefined, so any value of x that makes the radicand negative is not in the domain of a radical function.

The range of the linear function is all real values of y, and the range of the quadratic function is all real values of y that are greater than or equal to -4. The principal square root of a number is always 0 or positive, so the range of the radical functions is restricted to these values of y.

3. Solve each radical equation by graphing. Give the solution to the nearest tenth.

a)
$$-x + 3 = \sqrt{2x - 1}$$

b)
$$\sqrt{x+2} = 5 - \sqrt{3x+4}$$

Write the equation as: $-x + 3 - \sqrt{2x - 1} = 0$ **Graph the related function:** $f(x) = -x + 3 - \sqrt{2x - 1}$ Use graphing technology to determine the approximate

zero: 1.5505103 So, the solution is: x = 1.6 Write the equation as: $\sqrt{x+2}-5+\sqrt{3x+4}=0$ **Graph the related function:** $f(x) = \sqrt{x+2} - 5 + \sqrt{3x+4}$ Use graphing technology to determine the approximate zero: 1.779514 So, the solution is: x = 1.8

2.2

4. Use graphing technology to graph each rational function. Identify any non-permissible values of x and the equations of any horizontal asymptotes.

a)
$$y = \frac{3x}{x+4}$$

b)
$$y = \frac{3x}{x^2 - 4}$$

Since $x + 4 \neq 0$, then $x \neq -4$ The vertical asymptote has equation x = -4. The horizontal asymptote has equation y = 3.

Since $x^2 - 4 \neq 0$, then $x \neq \pm 2$ The vertical asymptotes have equations x = 2 and x = -2. The horizontal asymptote has equation y = 0.

c)
$$y = \frac{x^2 - 4}{3x}$$

d)
$$y = \frac{x^2 - 4x}{3x}$$

Since $3x \neq 0$, then $x \neq 0$ The vertical asymptote has equation x = 0. There is no horizontal asymptote. Since $3x \neq 0$, then $x \neq 0$ There is a hole at x = 0. There is no horizontal asymptote.

2.3

5. Multiple Choice Which function has a graph with a hole?

B.
$$y = \frac{x-4}{2x^2+8x}$$

$$\mathbf{C.} \, y = \frac{4x + 4}{2x^2 + 8x}$$

D.
$$y = \frac{x+4}{2x^2-8x}$$

- **6.** Match each function to its graph. Justify your choice.
 - i) Graph A

ii) Graph B

iii) Graph C

iv) Graph D

a) $y = \frac{-12x}{x - 3}$

There is a vertical asymptote with equation x = 3. The degrees of the numerator and denominator are equal, so there is a horizontal asymptote that is not the x-axis. The function matches Graph B.

b) $y = \frac{2x^2 - x - 15}{3 - x}$

Factor:
$$y = \frac{(2x + 5)(x - 3)}{3 - x}$$
,
or $y = \frac{-(2x + 5)(x - 3)}{x - 3}$

There is a hole at x = 3. The function matches Graph C.

c) $y = \frac{x^2}{x - 3}$

There is a vertical asymptote with equation x=3. The degree of the numerator is 1 more than the degree of the denominator, so there is an oblique asymptote. The function matches Graph D.

d) $y = \frac{x^2}{x^2 - 3}$

The function is not defined for $x^2-3=0$; that is, $x=\pm\sqrt{3}$. So, there are vertical asymptotes at $x=-\sqrt{3}$ and $x=\sqrt{3}$. The degrees of the numerator and denominator are equal, so there is a horizontal asymptote that is not the x-axis. The function matches Graph A.

- **7.** For the graph of each rational function below, determine without technology:
 - i) the equations of any asymptotes and the coordinates of any hole
 - ii) the domain of the function

Use graphing technology to verify the characteristics.

a)
$$y = \frac{2x^2}{25 - x^2}$$

i) The function is undefined when $25 - x^2 = 0$; that is, when $x = \pm 5$. There are no common factors, so there are vertical asymptotes with equations x = 5 and x = -5. The degrees of the numerator and denominator are equal, so there is a horizontal asymptote. The leading coefficients of the numerator and denominator are 2 and -1, respectively.

So, the horizontal asymptote has equation: y = -2

ii) The domain is: $x \neq \pm 5$

b)
$$y = \frac{-2x^2 - 6x}{x + 3}$$

i) The function is undefined when x + 3 = 0; that is, when x = -3.

Factor:
$$y = \frac{-2x(x+3)}{x+3}$$

There is a hole at x = -3. The function is: y = -2x, $x \neq -3$ The coordinates of the hole are: (-3, 6)

- ii) The domain is: $x \neq -3$
- **8.** Solve each rational equation by graphing. Give the solution to the nearest tenth.

a)
$$x - 2 = \frac{3x - 5}{x - 3}$$

a)
$$x - 2 = \frac{3x - 5}{x - 3}$$
 b) $\frac{x^2 + 3x - 5}{x - 1} = -5$

Graph a related function:

$$f(x) = x - 2 - \frac{3x - 5}{x - 3}$$

Graph a related function:

$$f(x) = \frac{x^2 + 3x - 5}{x - 1} + 5$$

Use graphing technology to determine the zeros:

$$x \doteq 1.8 \text{ or } x \doteq 6.2$$

$$x \doteq -9.1$$
 or $x \doteq 1.1$