Checkpoint: Assess Your Understanding, pages 124-128

2.1

1. Multiple Choice Given the graph of the function $y=f(x)$, which graph below right represents $y=\sqrt{f(x)}$?

2. For each function $y=f(x)$ graphed below:

- Sketch the graph of $y=\sqrt{f(x)}$.
- State the domain and range of $y=\sqrt{f(x)}$.
- Explain why the domains are different and the ranges are different.
a)

b)

Mark points where $y=0$ or $y=1$
The graph of $y=\sqrt{f(x)}$ is above the graph of $y=f(x)$ between these points. Choose, then mark other points on the graph of $y=\sqrt{f(x)}$.

x	$y=f(x)$	$y=\sqrt{f(x)}$
-3	2	$\doteq 1.4$
0	4	2

Join the points with a smooth curve.
Domain is: $x \geq-6$
$y=\sqrt{f(x)}$ is not defined for $-2<x<6$. Mark points where $y=0$ or $y=1$. Choose, then mark other points on the graph of $y=\sqrt{f(x)}$.

x	$y=f(x)$	$y=\sqrt{f(x)}$
-4	5	$\doteq 2.2$
8	5	$\doteq 2.2$

Join the points with 2 smooth curves.
Domain is: $x \leq-2$ or $x \geq 6$
Range is: $y \geq 0$
Range is: $y \geq 0$
The domain of a linear function or a quadratic function is all real values of x, but the square root of a negative number is undefined, so any value of x that makes the radicand negative is not in the domain of a radical function.
The range of the linear function is all real values of y, and the range of the quadratic function is all real values of y that are greater than or equal to -4 . The principal square root of a number is always 0 or positive, so the range of the radical functions is restricted to these values of y.
3. Solve each radical equation by graphing. Give the solution to the nearest tenth.
a) $-x+3=\sqrt{2 x-1}$
b) $\sqrt{x+2}=5-\sqrt{3 x+4}$

Write the equation as:
$-x+3-\sqrt{2 x-1}=0$
Graph the related function:
$f(x)=-x+3-\sqrt{2 x-1}$
Use graphing technology to
determine the approximate
zero: 1.5505103
So, the solution is: $x \doteq 1.6$

Write the equation as:
$\sqrt{x+2}-5+\sqrt{3 x+4}=0$
Graph the related function:
$f(x)=\sqrt{x+2}-5+\sqrt{3 x+4}$
Use graphing technology to determine
the approximate zero: 1.779514
So, the solution is: $x \doteq 1.8$

2.2

4. Use graphing technology to graph each rational function.

Identify any non-permissible values of x and the equations of any horizontal asymptotes.
a) $y=\frac{3 x}{x+4}$
b) $y=\frac{3 x}{x^{2}-4}$

Since $x+4 \neq 0$, then $x \neq-4$ The vertical asymptote has equation $x=-4$. The horizontal asymptote has equation $y=3$.

Since $x^{2}-4 \neq 0$, then $x \neq \pm 2$
The vertical asymptotes have equations $x=2$ and $x=-2$. The horizontal asymptote has equation $y=0$.
c) $y=\frac{x^{2}-4}{3 x}$

Since $3 x \neq 0$, then $x \neq 0$
The vertical asymptote has equation $x=0$. There is no horizontal asymptote.

2.3

5. Multiple Choice Which function has a graph with a hole?
(A.) $y=\frac{x+4}{2 x^{2}+8 x}$
B. $y=\frac{x-4}{2 x^{2}+8 x}$
C. $y=\frac{4 x+4}{2 x^{2}+8 x}$
D. $y=\frac{x+4}{2 x^{2}-8 x}$
6. Match each function to its graph. Justify your choice.
i) Graph A
ii) Graph B

iii) Graph C

a) $y=\frac{-12 x}{x-3}$

There is a vertical asymptote with equation $x=3$. The degrees of the numerator and denominator are equal, so there is a horizontal asymptote that is not the x-axis. The function matches Graph B.
iv) Graph D

b) $y=\frac{2 x^{2}-x-15}{3-x}$

Factor: $y=\frac{(2 x+5)(x-3)}{3-x}$,
or $y=\frac{-(2 x+5)(x-3)}{x-3}$
There is a hole at $x=3$. The function matches Graph C.
c) $y=\frac{x^{2}}{x-3}$

There is a vertical asymptote with equation $x=3$.
The degree of the numerator is 1 more than the degree of the denominator, so there is an oblique asymptote.
The function matches Graph D.
d) $y=\frac{x^{2}}{x^{2}-3}$

The function is not defined for $x^{2}-3=0$; that is, $x= \pm \sqrt{3}$. So, there are vertical asymptotes at $x=-\sqrt{3}$ and $x=\sqrt{3}$. The degrees of the numerator and denominator are equal, so there is a horizontal asymptote that is not the x-axis. The function matches Graph A.
7. For the graph of each rational function below, determine without technology:
i) the equations of any asymptotes and the coordinates of any hole
ii) the domain of the function

Use graphing technology to verify the characteristics.
a) $y=\frac{2 x^{2}}{25-x^{2}}$
i) The function is undefined when $25-x^{2}=0$; that is, when $x= \pm 5$. There are no common factors, so there are vertical asymptotes with equations $x=5$ and $x=-5$.
The degrees of the numerator and denominator are equal, so there is a horizontal asymptote. The leading coefficients of the numerator and denominator are 2 and -1 , respectively.
So, the horizontal asymptote has equation: $y=-2$
ii) The domain is: $x \neq \pm 5$
b) $y=\frac{-2 x^{2}-6 x}{x+3}$
i) The function is undefined when $x+3=0$; that is, when $x=-3$.

Factor: $y=\frac{-2 x(x+3)}{x+3}$
There is a hole at $x=-3$. The function is: $y=-2 x, x \neq-3$
The coordinates of the hole are: $(-3,6)$
ii) The domain is: $x \neq-3$
8. Solve each rational equation by graphing. Give the solution to the nearest tenth.
a) $x-2=\frac{3 x-5}{x-3}$
b) $\frac{x^{2}+3 x-5}{x-1}=-5$

Graph a related function:
$f(x)=x-2-\frac{3 x-5}{x-3}$
Use graphing technology to determine the zeros:
$x \doteq 1.8$ or $x \doteq 6.2$
Graph a related function:
$f(x)=\frac{x^{2}+3 x-5}{x-1}+5$
Use graphing technology to determine the zeros:
$x \doteq-9.1$ or $x \doteq 1.1$

