REVIEW, pages 146–153

2.1

- **1.** a) For each graph of y = f(x) below:
 - Sketch the graph of $y = \sqrt{f(x)}$.
 - State the domain and range of $y = \sqrt{f(x)}$.

i) Mark points where y = 0or y = 1. The graph of $y = \sqrt{f(x)}$ is above the graph of y = f(x) between these points. Choose, then mark other points.

X	y = f(x)	$y=\sqrt{f(x)}$
-2	8	≐ 2.8
0	4	2

Join all points with a smooth curve. The domain is: $x \le 2$ The range is: $y \ge 0$

ii) $y = \sqrt{f(x)}$ is not defined for x < -4 or x > 0. Mark points where y = 0 or y = 1. Choose, then mark another point.

X	y = f(x)	$y=\sqrt{f(x)}$		
-2	4	2		

Join the points with a smooth curve. The domain is: $-4 \le x \le 0$ The range is: $y \ge 0$

iii) The domain of $y = \sqrt{f(x)}$ is: $-2 \le x \le 2, x \ge 6$ Mark points where y = 0 or y = 1. Identify the coordinates of other points.

x	y = f(x)	$y=\sqrt{f(x)}$
0	24	≐ 5
6.5	20	≐ 4.5

Join the points with 2 smooth curves, for the graph of $y = \sqrt{f(x)}$. The range of $y = \sqrt{f(x)}$ is: $y \ge 0$

iv) Mark points where y = 0 or y = 1. Identify and mark the coordinates of other points above the *x*-axis.

x	y = f(x)	$y=\sqrt{f(x)}$
3	4	2
6	4	2

Join the points with 2 smooth curves; except where the graph of y = f(x) is horizontal, then the graph of $y = \sqrt{f(x)}$ is also horizontal. The domain is: $-3 \le x \le 4$, $5.5 \le x \le 8$ The range is: $0 \le y \le 2$

- **b**) Choose one pair of graphs from part a for which the domains are different and the ranges are different.
 - Explain the strategy you used to graph the radical function.
 - Explain why the domains differ and the ranges differ.

Sample response for part a) ii: I marked points where y = 0 or y = 1 because these points are invariant and lie on the graphs of both y = f(x) and $y = \sqrt{f(x)}$. The graph of $y = \sqrt{f(x)}$ lies above the graph of y = f(x) between these points because the square root of a number between 0 and 1 is greater than the number. I determined the coordinates of another point to improve my sketch. The domains differ because y = f(x) is defined for all real values of x while $y = \sqrt{f(x)}$ is only defined for values of x for which $f(x) \ge 0$. The ranges differ because f(x) can have any value less than or equal to 4, while $\sqrt{f(x)}$ can only be 0 or positive.

- **2.** Use graphing technology to graph the functions $y = x^2 9$ and $y = \sqrt{x^2 9}$ on the same screen.
 - a) State the domain and range of the function $y = \sqrt{x^2 9}$.

The domain is: $x \le -3, x \ge 3$ The range is: $y \ge 0$

b) How is the domain of the function $y = \sqrt{x^2 - 9}$ related to the domain of $y = x^2 - 9$?

The domain of $y = x^2 - 9$ is all real numbers. The domain of $y = \sqrt{x^2 - 9}$ is the real values of x for which $x^2 - 9 \ge 0$.

c) How are the zeros of $y = \sqrt{x^2 - 9}$ related to the zeros of $y = x^2 - 9$? Explain why.

The zeros of both functions are the same because their graphs have the same *x*-intercepts, and because the points with *y*-coordinate 0 are invariant.

d) What are the coordinates of the points of intersection of the two graphs? Explain your answer.

The graphs intersect at the invariant points; that is, where y = 0 and y = 1. The coordinates of these points are: $(\pm 3, 0)$; $(\pm \sqrt{10}, 1)$, or approximately $(\pm 3.2, 1)$.

3. Solve each radical equation by graphing. Give the solution to the nearest tenth.

a) $x + 3 = \sqrt{5 - 2x}$ **b**) $\sqrt{4x} = \sqrt{3x + 1} - x$

Write the equation as: $x + 3 - \sqrt{5 - 2x} = 0$ Graph the related function: $f(x) = x + 3 - \sqrt{5 - 2x}$ The approximate zero is: -0.5358984So, the solution is: $x \doteq -0.5$ Write the equation as: $\sqrt{4x} - \sqrt{3x + 1} + x = 0$ Graph the related function: $f(x) = \sqrt{4x} - \sqrt{3x + 1} + x$ The approximate zero is: 0.29025371 So, the solution is: $x \doteq 0.3$

2.2

4. Without graphing each rational function below, predict whether its graph has a hole and/or any horizontal or vertical asymptotes. State the related non-permissible values.

a)
$$y = \frac{x^2}{x^2 - 5x + 4}$$

Factor the denominator:

 $y = \frac{x^2}{(x - 1)(x - 4)}$ The non-permissible values are x = 1 and x = 4; these are the equations of the vertical asymptotes. Since the degrees of the numerator and denominator are equal, there is a horizontal asymptote.

c)
$$y = \frac{x^2 - 4x - 5}{x - 1}$$

Factor the numerator: $y = \frac{(x - 5)(x + 1)}{x - 1}$ The non-permissible value is

x = 1; this is the equation of the vertical asymptote. Since the degree of the numerator is greater than the degree of the denominator, there is no horizontal asymptote.

b)
$$y = \frac{x^2 - 5x + 4}{x - 4}$$

Factor the numerator: $y = \frac{(x - 1)(x - 4)}{x - 4}$

The non-permissible value is x = 4. The numerator and denominator have a common factor, so there is a hole at x = 4. Since the degree of the numerator is greater than the degree of the denominator, there is no horizontal asymptote.

d)
$$y = \frac{x - 4}{x - 1}$$

The non-permissible value is x = 1; this is the equation of the vertical asymptote. Since the degrees of the numerator and denominator are equal, there is a horizontal asymptote.

- 5. Match each function to its graph. Justify your choice.
 - i) Graph A

ii) Graph B

iv) Graph D

iii) Graph C

a)
$$y = \frac{-4x^2}{x^2 + 4}$$

The denominator is always positive, so there is no vertical asymptote. The degrees of the numerator and denominator are equal, so there is a horizontal asymptote that is not the *x*-axis. The function matches Graph C.

c)
$$y = \frac{x^2 + 4}{x^2 - 4}$$

The function is undefined when $x^2 - 4 = 0$, so $x = \pm 2$; these are the equations of the vertical asymptotes. The degrees of the numerator and denominator are equal, so there is a horizontal asymptote that is not the *x*-axis. The function matches Graph D.

b)
$$y = \frac{x}{x-4}$$

The function is undefined when x = 4, so this is the equation of the vertical asymptote. The degrees of the numerator and denominator are equal, so there is a horizontal asymptote that is not the *x*-axis. The function matches Graph A.

d)
$$y = \frac{x^2 - 16}{x - 4}$$

Factor: $y = \frac{(x-4)(x+4)}{x-4}$ There is a common factor (x-4), so there is a hole at x = 4. The function matches Graph B.

©P DO NOT COPY.

6. Solve each rational equation by graphing. Give the solution to the nearest tenth where necessary.

a)
$$\frac{2x-1}{x+3} = \frac{4}{x-2}$$

Graph a related function:
 $f(x) = \frac{2x-1}{x+3} - \frac{4}{x-2}$
Use graphing technology to
determine the zeros:
 $x \doteq -0.9$ or $x \doteq 5.4$
b) $\frac{x^2}{x^2-3} - \frac{x}{x+2} = \frac{x}{2-x}$
Graph a related function:
 $f(x) = \frac{x^2}{x^2-3} - \frac{x}{x+2} - \frac{x}{2-3}$
Use graphing technology to
determine the zeros:
 $x \doteq -4.3$ or $x \doteq -1.5$ or $x =$
or $x \doteq 1.8$

- **7.** For the graph of each function below
 - i) Without graphing:
 - Determine the coordinates of any holes and the equations of any asymptotes.
 - Determine the domain.
 - ii) Use graphing technology to verify the characteristics and to explain the behaviour of the graph near the non-permissible values.

a)
$$y = \frac{-2x}{x^2 - 1}$$
 b) $y = \frac{3x^2 + 8x + 4}{x - 1}$

i) The function is undefined when $x^2 - 1 = 0$, so $x = \pm 1$; these are the equations of the vertical asymptotes. Since the degree of the numerator is less than the degree of the denominator, there is a horizontal asymptote with equation y = 0. The domain is: $x \neq \pm 1$

From the calculator screen: as $|x| \rightarrow \infty$, $y \rightarrow 0$, which verifies the horizontal asymptote; as $x \rightarrow \pm 1$, $y \rightarrow \pm \infty$, which verifies the vertical asymptotes.

i) The function is undefined when
$$x = 1$$
.
There are no common factors
so $x = 1$ is the equation of the
vertical asymptote.
There is an oblique asymptote.
Determine:
 $(3x^2 + 8x + 4) \div (x - 1)$
1
1
3
3
11
15

x

0,

The quotient is 3x + 11, so the equation of the oblique asymptote is y = 3x + 11. The domain is: $x \neq 1$

From the calculator screen: as $|x| \rightarrow \infty$, $y \rightarrow 3x + 11$, which verifies the oblique asymptote; as $x \rightarrow 1$, $y \rightarrow \pm \infty$, which verifies the vertical asymptote.

2.4

8. Without using graphing technology, sketch a graph of each function. State the domain.

a)
$$y = \frac{x^2 - x}{x + 1}$$

The function is undefined when x = -1.

Factor: $y = \frac{x(x-1)}{x+1}$

There are no common factors, so there is a vertical asymptote with equation: x = -1

There is also an oblique asymptote. Determine: $(x^2 - x) \div (x + 1)$

The quotient is x - 2; so the equation of the oblique asymptote is y = x - 2.

Choose points, including those close to the vertical asymptote:

x	-2	-3	-1.01	-0.99
у	-6	-6	-203	197

Some of the *y*-values above are approximate. When x = 0, y = 0When y = 0, $x^2 - x = 0$ x(x - 1) = 0

x = 0 or x = 1Plot points at these intercepts. Draw broken lines for the asymptotes. Join the points to form 2 smooth curves.

The domain is: $x \neq -1$

b)
$$y = \frac{-x^2}{x^2 - 9}$$

The function is undefined when: **x**²

$$2^{2} - 9 = 0$$

 $x = \pm 3$

There are no common factors so there are vertical asymptotes with equations $x = \pm 3$.

There is a horizontal asymptote. The leading coefficients are -1 and 1, so the horizontal asymptote has equation y = -1.

Determine the behaviour of the graph close to the asymptotes.

x	-3.01	-2.99	2.99	3.01	-100	100
у	-151	149	149	-151	-1.001	-1.001

Some of the *y*-values above are approximate. When x = 0, y = 0

When y = 0, x = 0

Plot a point at this intercept.

Determine the approximate coordinates of other points:

(-4, -2.3) and (4, -2.3)

Draw broken lines for the asymptotes, then sketch 3 smooth curves. The domain is: $x \neq \pm 3$

