REVIEW, pages 146-153

2.1

1. a) For each graph of $y=f(x)$ below:

- Sketch the graph of $y=\sqrt{f(x)}$.
- State the domain and range of $y=\sqrt{f(x)}$.
i)

i) Mark points where $y=0$ or $y=1$. The graph of $y=\sqrt{f(x)}$ is above the graph of $y=f(x)$ between these points. Choose,
then mark other points.

x	$y=f(x)$	$y=\sqrt{f(x)}$
-2	8	$\doteq 2.8$
0	4	2

Join all points with a smooth curve.
The domain is: $x \leq 2$
The range is: $y \geq 0$
ii)

ii) $y=\sqrt{f(x)}$ is not defined for $x<-4$ or $x>0$. Mark points where $y=0$ or $y=1$. Choose, then mark another point.

x	$y=f(x)$	$y=\sqrt{f(x)}$
-2	4	2

Join the points with a smooth curve.
The domain is: $-4 \leq x \leq 0$
The range is: $y \geq 0$
iii)

iii) The domain of $y=\sqrt{f(x)}$ is: $-2 \leq x \leq 2, x \geq 6$ Mark points where $y=0$ or $y=1$. Identify the coordinates of other points.

x	$y=f(x)$	$y=\sqrt{f(x)}$
0	24	$\doteq 5$
6.5	20	$\doteq 4.5$

Join the points with 2 smooth curves, for the graph of $y=\sqrt{f(x)}$.
The range of $y=\sqrt{f(x)}$ is: $y \geq 0$
iv)

iv) Mark points where $y=0$ or $y=1$. Identify and mark the coordinates of other points above the x-axis.

x	$y=f(x)$	$y=\sqrt{f(x)}$
3	4	2
6	4	2

Join the points with 2 smooth curves; except where the graph of $y=f(x)$ is horizontal, then the graph of $y=\sqrt{f(x)}$ is also horizontal.
The domain is: $-3 \leq x \leq 4$, $5.5 \leq x \leq 8$
The range is: $0 \leq y \leq 2$
b) Choose one pair of graphs from part a for which the domains are different and the ranges are different.

- Explain the strategy you used to graph the radical function.
- Explain why the domains differ and the ranges differ.

Sample response for part a) ii: I marked points where $y=0$ or $y=1$ because these points are invariant and lie on the graphs of both $y=f(x)$ and $y=\sqrt{f(x)}$. The graph of $y=\sqrt{f(x)}$ lies above the graph of $y=f(x)$ between these points because the square root of a number between 0 and 1 is greater than the number. I determined the coordinates of another point to improve my sketch.
The domains differ because $y=f(x)$ is defined for all real values of x while $y=\sqrt{f(x)}$ is only defined for values of x for which $f(x) \geq 0$. The ranges differ because $f(x)$ can have any value less than or equal to 4 , while $\sqrt{f(x)}$ can only be 0 or positive.
2. Use graphing technology to graph the functions $y=x^{2}-9$ and $y=\sqrt{x^{2}-9}$ on the same screen.
a) State the domain and range of the function $y=\sqrt{x^{2}-9}$.

The domain is: $x \leq-3, x \geq 3$
The range is: $y \geq 0$
b) How is the domain of the function $y=\sqrt{x^{2}-9}$ related to the domain of $y=x^{2}-9$?

The domain of $y=x^{2}-9$ is all real numbers. The domain of $y=\sqrt{x^{2}-9}$ is the real values of x for which $x^{2}-9 \geq 0$.
c) How are the zeros of $y=\sqrt{x^{2}-9}$ related to the zeros of $y=x^{2}-9$? Explain why.

The zeros of both functions are the same because their graphs have the same x-intercepts, and because the points with y-coordinate 0 are invariant.
d) What are the coordinates of the points of intersection of the two graphs? Explain your answer.

The graphs intersect at the invariant points; that is, where $y=0$ and $y=1$.
The coordinates of these points are: $(\pm 3,0)$; $(\pm \sqrt{10}, 1)$, or approximately ($\pm 3.2,1$).
3. Solve each radical equation by graphing. Give the solution to the nearest tenth.
a) $x+3=\sqrt{5-2 x}$
b) $\sqrt{4 x}=\sqrt{3 x+1}-x$

Write the equation as:
$x+3-\sqrt{5-2 x}=0$
Graph the related function:
$f(x)=x+3-\sqrt{5-2 x}$
The approximate zero is:
-0.5358984
So, the solution is: $x=-0.5$

Write the equation as:
$\sqrt{4 x}-\sqrt{3 x+1}+x=0$
Graph the related function:
$f(x)=\sqrt{4 x}-\sqrt{3 x+1}+x$
The approximate zero is:
0.29025371

So, the solution is: $x \doteq 0.3$
4. Without graphing each rational function below, predict whether its graph has a hole and/or any horizontal or vertical asymptotes. State the related non-permissible values.
a) $y=\frac{x^{2}}{x^{2}-5 x+4}$
Factor the denominator:
$y=\frac{x^{2}}{(x-1)(x-4)}$
b) $y=\frac{x^{2}-5 x+4}{x-4}$
Factor the numerator:
$y=\frac{(x-1)(x-4)}{x-4}$

The non-permissible values are $x=1$ and $x=4$; these are the equations of the vertical asymptotes. Since the degrees of the numerator and denominator are equal, there is a horizontal asymptote.

The non-permissible value is $x=4$.
The numerator and denominator have a common factor, so there is a hole at $x=4$. Since the degree of the numerator is greater than the degree of the denominator, there is no horizontal asymptote.
c) $y=\frac{x^{2}-4 x-5}{x-1}$

Factor the numerator:
$y=\frac{(x-5)(x+1)}{x-1}$
The non-permissible value is $x=1$; this is the equation of the vertical asymptote. Since the degree of the numerator is greater than the degree of the denominator, there is no horizontal asymptote.
d) $y=\frac{x-4}{x-1}$

The non-permissible value is $x=1$; this is the equation of the vertical asymptote. Since the degrees of the numerator and denominator are equal, there is a horizontal asymptote.

2.3

5. Match each function to its graph. Justify your choice.
i) Graph A

ii) Graph B

iv) Graph D

a) $y=\frac{-4 x^{2}}{x^{2}+4}$

The denominator is always positive, so there is no vertical asymptote. The degrees of the numerator and denominator are equal, so there is a horizontal asymptote that is not the x-axis. The function matches Graph C.
b) $y=\frac{x}{x-4}$

The function is undefined when $x=4$, so this is the equation of the vertical asymptote. The degrees of the numerator and denominator are equal, so there is a horizontal asymptote that is not the x-axis. The function matches Graph A.
d) $y=\frac{x^{2}-16}{x-4}$

Factor: $y=\frac{(x-4)(x+4)}{x-4}$
There is a common factor ($x-4$), so there is a hole at $x=4$. The function matches Graph B.
6. Solve each rational equation by graphing. Give the solution to the nearest tenth where necessary.
a) $\frac{2 x-1}{x+3}=\frac{4}{x-2}$
b) $\frac{x^{2}}{x^{2}-3}-\frac{x}{x+2}=\frac{x}{2-x}$

Graph a related function:
$f(x)=\frac{2 x-1}{x+3}-\frac{4}{x-2}$
Use graphing technology to
determine the zeros:
$x \doteq-0.9$ or $x \doteq 5.4$

Graph a related function:
$f(x)=\frac{x^{2}}{x^{2}-3}-\frac{x}{x+2}-\frac{x}{2-x}$
Use graphing technology to determine the zeros:
$x \doteq-4.3$ or $x \doteq-1.5$ or $x=0$, or $x \doteq 1.8$
7. For the graph of each function below
i) Without graphing:

- Determine the coordinates of any holes and the equations of any asymptotes.
- Determine the domain.
ii) Use graphing technology to verify the characteristics and to explain the behaviour of the graph near the non-permissible values.
a) $y=\frac{-2 x}{x^{2}-1}$
b) $y=\frac{3 x^{2}+8 x+4}{x-1}$
i) The function is undefined when $x^{2}-1=0$, so $x= \pm 1$; these are the equations of the vertical asymptotes. Since the degree of the numerator is less than the degree of the denominator, there is a horizontal asymptote with equation $y=0$. The domain is: $x \neq \pm 1$
ii)

From the calculator screen: as $|x| \rightarrow \infty, y \rightarrow 0$, which verifies the horizontal asymptote; as $x \rightarrow \pm 1, y \rightarrow \pm \infty$, which verifies the vertical asymptotes.
i) The function is undefined when $x=1$.
There are no common factors so $x=1$ is the equation of the vertical asymptote.
There is an oblique asymptote. Determine:

$$
\left(3 x^{2}+8 x+4\right) \div(x-1)
$$

$1 \begin{gathered}1 \begin{array}{lll}3 & 8 & 4 \\ 3\end{array} \\ \\ \\ \\ 3\end{gathered}$
The quotient is $3 x+11$, so the equation of the oblique asymptote is $y=3 x+11$. The domain is: $x \neq 1$
ii)

From the calculator screen: as $|x| \rightarrow \infty, y \rightarrow 3 x+11$, which verifies the oblique asymptote; as $x \rightarrow 1, y \rightarrow \pm \infty$, which verifies the vertical asymptote.

2.4

8. Without using graphing technology, sketch a graph of each function. State the domain.
a) $y=\frac{x^{2}-x}{x+1}$

The function is undefined when $x=-1$.
Factor: $y=\frac{x(x-1)}{x+1}$
There are no common factors, so there is a vertical asymptote with equation: $x=-1$
There is also an oblique asymptote. Determine: $\left(x^{2}-x\right) \div(x+1)$

$$
\begin{gathered}
\left.-1 \quad \left\lvert\, \begin{array}{lll}
1 & -1 & 0 \\
& -1 & 2 \\
\hline & -2 & 2
\end{array}\right., \begin{array}{l}
1
\end{array}\right)
\end{gathered}
$$

The quotient is $x-2$; so the equation of the oblique asymptote is $y=x-2$.
Choose points, including those close to the vertical asymptote:

$x x$	-2	-3	-1.01	-0.99
y	-6	-6	-203	197

Some of the y-values above are approximate.
When $x=0, y=0$
When $y=0$,

$$
x^{2}-x=0
$$

$x(x-1)=0$
$x=0$ or $x=1$
Plot points at these intercepts.
Draw broken lines for the asymptotes.
Join the points to form 2 smooth curves.
The domain is: $x \neq-1$
b) $y=\frac{-x^{2}}{x^{2}-9}$

The function is undefined when:

$$
\begin{aligned}
x^{2}-9 & =0 \\
x & = \pm 3
\end{aligned}
$$

There are no common factors so there are vertical asymptotes with equations $x= \pm 3$.
There is a horizontal asymptote. The leading coefficients are - 1 and 1, so the horizontal asymptote has equation $y=-1$.
Determine the behaviour of the graph close to the asymptotes.

x	-3.01	-2.99	2.99	3.01	-100	100
y	-151	149	149	-151	-1.001	-1.001

Some of the y-values above are approximate.
When $x=0, y=0$
When $y=0, x=0$
Plot a point at this intercept.
Determine the approximate coordinates of other points:
$(-4,-2.3)$ and $(4,-2.3)$
Draw broken lines for the asymptotes, then sketch 3 smooth curves.
The domain is: $x \neq \pm 3$

