Lesson 3.1 Exercises, pages 169-175

A

4. On each grid, the graph of $y=|x|$ and its image after a single translation are shown. What was the translation? What is the equation of the image graph?
a)

b)

The graph of $y=|x|$ was translated 4 units down. The image graph has equation $y+4=|x|$.
5. For each equation of a translation image, describe how the graph of $y=f(x)$ was translated.
a) $y=f(x-7)$

Compare the equation to $y=f(x-h): h=7$
So, the graph of $y=f(x)$ was translated 7 units right.
b) $y+5=f(x)$

Write $y+5=f(x)$
as $y-(-5)=f(x)$. Compare the
equation to $y-k=f(x): k=-5$
So, the graph of $y=f(x)$ was translated 5 units down.
c) $y=f(x+6)$
d) $y-4=f(x)$

Write $y=f(x+6)$ as
$y=f(x-(-6))$.
Compare the equation to
$y=f(x-h): h=-6$
Compare the equation to
$y-k=f(x): k=4$
So, the graph of $y=f(x)$ was translated 4 units up.
So, the graph of $y=f(x)$ was translated 6 units left.
6. The graph of $y=g(x)$ is translated as described below. Write the equation of each translation image in terms of the function g.
a) a translation of 3 units right

The translation is horizontal, so the equation of the image graph has the form $y=g(x-h)$. The translation is 3 units right, so $h=3$. The equation of the translation image is: $y=g(x-3)$
b) a translation of 8 units down

The translation is vertical, so the equation of the image graph has the form $y-k=g(x)$. The translation is 8 units down, so $k=-8$. The equation of the translation image is: $y-(-8)=g(x)$, or $y+8=g(x)$
c) a translation of 9 units up

The translation is vertical, so the equation of the image graph has the form $y-k=g(x)$. The translation is 9 units up, so $k=9$. The equation of the translation image is: $y-9=g(x)$
d) a translation of 7 units left

The translation is horizontal, so the equation of the image graph has the form $y=g(x-h)$. The translation is 7 units left, so $h=-7$. The equation of the translation image is: $y=g(x-(-7))$, or $y=g(x+7)$

B

7. Here is the graph of $y=g(x)$. On the same grid, sketch the graph of each function below. State the domain and range of each function.

a) $y-1=g(x)$

Compare the equation to $y-k=g(x): k=1$
So, translate each point on the graph of $y=g(x) 1$ unit up.
Both functions have the same domain: $-2 \leq x \leq 5$
The range of $y=g(x)$ is:
$-1 \leq y \leq 3$
The range of $y-1=g(x)$ is: $0 \leq y \leq 4$
b) $y=g(x+3)$

Write $y=g(x+3)$ as $y=g(x-(-3))$.
Compare the equation to
$y=g(x-h): h=-3$
So, translate each point on the
graph of $y=g(x) 3$ units left.
The domain of $y=g(x)$ is: $-2 \leq x \leq 5$
The domain of $y=g(x+3)$ is:
$-5 \leq x \leq 2$
Both functions have the same
range: $-1 \leq y \leq 3$
8. Here is the graph of $y=f(x)$. On the same grid, sketch the graph of each function below. State the domain and range of each function.

a) $y+3=f(x+2)$

Write $y+3=f(x+2)$ as $y-(-3)=f(x-(-2))$.
Compare the equation to $y-k=f(x-h)$:
$h=-2$ and $k=-3$
Mark some lattice points on $y=f(x)$.
Translate each point 2 units left and 3 units down, then join the points with a smooth curve.
Both functions have domain: $x \in \mathbb{R}$
The range of $y=f(x)$ is: $y \geq 0$
The range of $y+3=f(x+2)$ is: $y \geq-3$
b) $y-1=f(x-2)$

Compare the equation to $y-k=f(x-h)$:
$h=2$ and $k=1$
Mark some lattice points on $y=f(x)$.
Translate each point 2 units right and 1 unit up, then join the points with a smooth curve.
Both functions have domain: $x \in \mathbb{R}$
The range of $y=f(x)$ is: $y \geq 0$
The range of $y-1=f(x-2)$ is: $y \geq 1$
9. The point $\mathrm{A}(3,7)$ lies on the graph of $y=f(x)$. What are the coordinates of its image A^{\prime} on the graph of $y-2=f(x-8)$? How do you know?

Compare the equation $y-2=f(x-8)$ to $y-k=f(x-h): h=8$ and $k=2$
So, each point on the graph of $y=f(x)$ is translated 8 units right and 2 units up to create the graph of $y-2=f(x-8)$.
So, the image of point A is $A^{\prime}(3+8,7+2)$, or $A^{\prime}(11,9)$.
10. Here is the graph of $y=j(x)$. On the same grid, sketch the graph of $y-3=j(x+2)$. Describe how the vertical and horizontal asymptotes are affected by the translations. What are the equations of the asymptotes of the image graph?

> Compare $y-3=j(x+2)$ to
> $y-k=j(x-h):$
> $h=-2$ and $k=3$

So, translate the vertical asymptotes 2 units left and the horizontal asymptote 3 units up. Then sketch the graph of $y-3=j(x+2)$ so that it is congruent to the graph of $y=j(x)$. The equations of the vertical asymptotes are $x=-4$ and $x=0$. The equation of the horizontal asymptote is $y=3$.
11. Use the graph of $y=p(x)$ to sketch the graph of each function below.
a) $y+2=p(x+3)$

Compare $y+2=p(x+3)$ to
$y-k=p(x-h)$:
$h=-3$ and $k=-2$
Mark some lattice points on $y=p(x)$. Translate each point 3 units left and 2 units down. Draw a smooth curve through the points so that the image graph is congruent to the graph of $y=p(x)$.
b) $y-3=p(x-2)$

Compare $y-3=p(x-2)$ to $y-k=p(x-h): h=2$ and $k=3$ Mark some lattice points on $y=p(x)$. Translate each point 2 units right and 3 units up.
Draw a smooth curve through the points so that the image graph is congruent to the graph of $y=p(x)$.
12. The function $y=f(x)$ has domain $-7 \leq x \leq 12$ and range $-1 \leq y \leq 10$. What are the domain and range of $y+8=f(x-3)$?
Write $y+8=f(x-3)$ as $y-(-8)=f(x-3)$.
Compare the equation to $y-k=f(x-h): h=3$ and $k=-8$
So, each point on the graph of $y=f(x)$ is translated 3 units right and 8 units down to create the graph of $y+8=f(x-3)$.
So, the image graph has domain: $-7+3 \leq x \leq 12+3$, or $-4 \leq x \leq 15$ and range: $-1-8 \leq y \leq 10-8$, or $-9 \leq y \leq 2$
13. Describe how the graph of $y=\sqrt{x}$ has been translated to create the graph of each function below. Use graphing technology to check.
a) $y=\sqrt{x-1}$

Compare $y=\sqrt{x-1}$ to $y-k=\sqrt{x-h}: h=1$ and $k=0$
So, the graph of $y=\sqrt{x-1}$ is the graph of $y=\sqrt{x}$ after a translation of 1 unit right.
b) $y=\sqrt{x+4}-2$

Write $y=\sqrt{x+4}-2$ as $y-(-2)=\sqrt{x-(-4)}$, then compare to $y-k=\sqrt{x-h}: h=-4$ and $k=-2$
So, the graph of $y=\sqrt{x+4}-2$ is the graph of $y=\sqrt{x}$ after a translation of 4 units left and 2 units down.
14. The graph of $y=x^{3}$ is translated 5 units left and 3 units up. What is the equation of the image graph?

The equation of the image graph has the form $y-k=(x-h)^{3}$. $h=-5$ and $k=3$
So, the equation of the image graph is: $y-3=(x-(-5))^{3}$, or $y-3=(x+5)^{3}$
15. The graph of $y=\left|x^{2}-2\right|$ is translated 2 units right and 7 units down. What is the equation of the image graph?

The equation of the image graph has the form $y-k=\left|(x-h)^{2}-2\right|$. $h=2$ and $k=-7$
So, the equation of the image graph is: $y-(-7)=\left|(x-2)^{2}-2\right|$, or $y+7=\left|(x-2)^{2}-2\right|$
16. The graph of $y=f(x)$ has been translated to create the graphs below. Match each graph to its equation.

i) Graph A

				4	y				
				2					
						x			
-4	-2	0		2	4				

iii) Graph C

ii) Graph B

iv) Graph D

a) $y-1=f(x+2)$

Compare $y-1=f(x-(-2))$ to $y-k=f(x-h): h=-2$ and $k=1$
So, the graph of $y=f(x)$ is translated 2 units left and 1 unit up.
This corresponds to Graph D.
b) $y-1=f(x-2)$

Compare $y-1=f(x-2)$ to $y-k=f(x-h): h=2$ and $k=1$ So, the graph of $y=f(x)$ is translated 2 units right and 1 unit up. This corresponds to Graph A.
c) $y+1=f(x-2)$

Compare $y-(-1)=f(x-2)$ to $y-k=f(x-h): h=2$ and $k=-1$ So, the graph of $y=f(x)$ is translated 2 units right and 1 unit down.
This corresponds to Graph B.
d) $y+2=f(x-1)$

Compare $y+2=f(x-1)$ to $y-k=f(x-h): h=1$ and $k=-2$ So, the graph of $y=f(x)$ is translated 1 unit right and 2 units down.
This corresponds to Graph C.
17. The graph of $f(x)=x^{2}-5 x-6$ has zeros at -1 and 6 .
a) The graph of $y=f(x)$ is translated horizontally. Neither zero of the image graph is negative. What is the shortest possible translation?

A translation of 1 unit right would move the zero -1 to 0 . So, the shortest possible translation is 1 unit right.
b) The graph of $y=f(x)$ is translated horizontally. Neither zero of the image graph is positive. What is the shortest possible translation?
A translation of 6 units left would move the zero 6 to 0 . So, the shortest possible translation is 6 units left.

C

18. The graph of $y=2 x^{2}-12 x+23$ is translated vertically so that its vertex lies on the x-axis. How could you use the discriminant to determine the translation? What is the translation?

The equation of the translation image has the form $y-k=2 x^{2}-12 x+23$, or $y=2 x^{2}-12 x+23+k$.
The vertex lies on the x-axis when the value of the discriminant is 0 .
In $b^{2}-4 a c$, substitute: $a=2, b=-12, c=23+k$
$(-12)^{2}-4(2)(23+k)=0$
$144-8(23+k)=0$
$-8(23+k)=-144$
$23+k=18$
$k=-5$
So, the translation is 5 units down.

