Lesson 3.3 Exercises, pages 201-210

A
3. Here is the graph of $y=g(x)$. On the same grid, sketch the graph of each function.
a) $y=\frac{1}{3} g(x)$
$a=\frac{1}{3}$, so the graph of $y=g(x)$ is vertically compressed by a factor of $\frac{1}{3}$.
Use: (x, y) on $y=g(x)$ corresponds to
$\left(x, \frac{1}{3} y\right)$ on $y=\frac{1}{3} g(x)$.

Point on $y=g(x)$	Point on $y=\frac{1}{3} g(x)$
$(-1,-3)$	$(-1,-1)$
$(2,-3)$	$(2,-1)$
$(4,3)$	$(4,1)$

Plot the points, then join them.
b) $y=-2 g(x)$
$a=-2$, so the graph of $y=g(x)$ is vertically stretched by a factor of 2 ,
then reflected in the x-axis.
Use: (x, y) on $y=g(x)$ corresponds to $(x,-2 y)$ on $y=-2 g(x)$.

Point on $y=g(x)$	Point on $y=-2 g(x)$
$(-1,-3)$	$(-1,6)$
$(2,-3)$	$(2,6)$
$(4,3)$	$(4,-6)$

Plot the points, then join them.
4. Here is the graph of $y=f(x)$. On the same grid, sketch the graph of each function.
a) $y=f(4 x)$
$b=4$, so the graph of $y=f(x)$ is horizontally compressed by a factor
of $\frac{1}{4}$.
Use: (x, y) on $y=f(x)$ corresponds to $\left(\frac{x}{4}, y\right)$ on $y=f(4 x)$.

Point on $y=f(x)$	Point on $y=f(4 x)$
$(-2,4)$	$(-0.5,4)$
$(2,6)$	$(0.5,6)$
$(4,3)$	$(1,3)$

Plot the points, then join them.
b) $y=f\left(\frac{1}{2} x\right)$
$b=\frac{1}{2}$ or 0.5 , so the graph of $y=f(x)$ is horizontally stretched by a
factor of $\frac{1}{0.5}$, or 2 .
Use: (x, y) on $y=f(x)$ corresponds to $\left(\frac{x}{0.5}, y\right)$, or $(2 x, y)$ on
$y=f\left(\frac{1}{2} x\right)$.

Point on $y=f(x)$	Point on $y=f\left(\frac{1}{2} x\right)$
$(-2,4)$	$(-4,4)$
$(2,6)$	$(4,6)$
$(4,3)$	$(8,3)$

Plot the points, then join them.
5. The graph of $y=f(x)$ is transformed as described below. Write an equation of the image graph in terms of the function f.
a) a vertical stretch by a factor of 4

The equation of the image graph has the form $y=a f(x)$.
Since the graph was vertically stretched by a factor of $4, a=4$.
So, the equation of the image graph is: $y=4 f(x)$
b) a horizontal compression by a factor of $\frac{1}{3}$ and a reflection in the y-axis

The equation of the image graph has the form $y=f(b x)$.
Since the graph was horizontally compressed by a factor of $\frac{1}{3}, \frac{1}{b}=\frac{1}{3}$, or $b=3$. Since the graph was also reflected in the y-axis, b is negative. So, the equation of the image graph is: $y=f(-3 x)$
c) a vertical compression by a factor of $\frac{1}{5}$ and a reflection in the x-axis

The equation of the image graph has the form $y=a f(x)$.
Since the graph was vertically compressed by a factor of $\frac{1}{5}, a=\frac{1}{5}$
Since the graph was also reflected in the x-axis, a is negative.
So, the equation of the image graph is: $y=-\frac{1}{5} f(x)$

B
6. The graph of $y=|x|$ is transformed, and the equation of its image is $y=|2 x|$. Student A says the graph of $y=|x|$ was horizontally compressed by a factor of $\frac{1}{2}$. Student B says the graph of $y=|x|$ was vertically stretched by a factor of 2 . Who is correct? Explain.
Both students are correct. Compare $y=|2 x|$ to $y=a|b x|: a=1$ and $b=2$. So, the graph of $y=|x|$ was horizontally compressed by a factor of $\frac{1}{2}$. Because $|2|$ is 2 , the equation $y=|2 x|$ can also be written as $y=2|x|$. Compare $y=2|x|$ to $y=a|b x|: a=2$ and $b=1$. So, the graph of $y=|x|$ was vertically stretched by a factor of 2 .
7. The point $\mathrm{A}(36,6)$ lies on the graph of $y=\sqrt{x}$. What are the coordinates of its image A^{\prime} on the graph of $y=-\frac{1}{2} \sqrt{3 x}$? How do you know?
Compare $y=-\frac{1}{2} \sqrt{3 x}$ to $y=a \sqrt{b x}: a=-\frac{1}{2}$ and $b=3$
Point (x, y) on $y=\sqrt{x}$ corresponds to point $\left(\frac{x}{3^{\prime}}-\frac{1}{2} y\right)$ on $y=-\frac{1}{2} \sqrt{3 x}$.
So, the image of $A(36,6)$ is $A^{\prime}\left(\frac{36}{3},-\frac{1}{2}(6)\right)$, which is $\mathrm{A}^{\prime}(12,-3)$.
8. Here is the graph of $y=g(x)$. On the same grid, sketch the graph of each function. State the domain and range of each function.
a) $y=g\left(\frac{3}{4} x\right)$
$b=\frac{3}{4}$, so the graph of $y=g(x)$ is horizontally stretched by a factor of $\frac{1}{0.75}$, or $\frac{4}{3}$.
Use: (x, y) on $y=g(x)$ corresponds to $\left(\frac{4}{3} x, y\right)$ on $y=g\left(\frac{3}{4} x\right)$.

Point on $y=g(x)$	Point on $y=g\left(\frac{3}{4} x\right)$
$(-4,-7)$	$\left(-\frac{16}{3},-7\right)$
$(-3,0)$	$(-4,0)$
$(0,-9)$	$(0,-9)$
$(3,0)$	$(4,0)$
$(4,-7)$	$\left(\frac{16}{3},-7\right)$

Plot the points, then join them with a smooth curve.
Both functions have domain: $x \in \mathbb{R}$
Both functions have range: $y \leq 0$
b) $y=-\frac{1}{2} g(x)$
$a=-\frac{1}{2}$, so the graph of $y=g(x)$ is vertically compressed by a factor
of $\frac{1}{2}$, then reflected in the x-axis. Use: (x, y) on $y=g(x)$ corresponds to
$\left(x,-\frac{1}{2} y\right)$ on $y=-\frac{1}{2} g(x)$.

| Point on |
| :--- | :--- |
$y=g(x)$		Point on	
$y=-\frac{1}{2} g(x)$,	$\left(-4, \frac{7}{2}\right)$	
:---	:---		
$(-4,-7)$	$(-3,0)$		
$(-3,0)$	$(0,4.5)$		
$(0,-9)$	$(3,0)$		
$(3,0)$	$\left(4, \frac{7}{2}\right)$		
$(4,-7)$			

Plot the points, then join them with a smooth curve.
Both functions have domain: $x \in \mathbb{R}$
The range of $y=g(x)$ is: $y \leq 0$
The range of $y=-\frac{1}{2} g(x)$ is: $y \geq 0$
9. On each grid, sketch the graph of each given function then state its domain and range.
a) i) $y=(-2 x)^{3}$

Compare to $y=(-x)^{3}: b=2$; so use mental math and the transformation: (x, y) on $y=(-x)^{3}$ corresponds to $\left(\frac{x}{2}, y\right)$ on $y=(-2 x)^{3}$.
Domain: $x \in \mathbb{R}$; range: $y \in \mathbb{R}$

ii) $y=\frac{1}{2}(-2 x)^{3}$

Compare to $y=(-2 x)^{3}$: $a=\frac{1}{2}$; so use mental math and the transformation: (x, y) on $y=(-2 x)^{3}$ corresponds to $\left(x, \frac{1}{2} y\right)$ on $y=\frac{1}{2}(-2 x)^{3}$. Domain: $x \in \mathbb{R}$; range: $y \in \mathbb{R}$
b) i) $y=2 \sqrt{3 x}$

Compare to $y=\sqrt{x}: a=2, b=3$; so use mental math and the transformation:
(x, y) on $y=\sqrt{x}$ corresponds to $\left(\frac{x}{3}, 2 y\right)$ on $y=2 \sqrt{3 x}$.
Domain: $x \geq 0$; range: $y \geq 0$

ii) $y=-3 \sqrt{3 x}$

Compare to $y=\sqrt{x}: a=-3, b=3$; so use mental math and the transformation: (x, y) on $y=\sqrt{x}$ corresponds to $\left(\frac{x}{3},-3 y\right)$ on $y=-3 \sqrt{3 x}$. Domain: $x \geq 0$; range: $y \leq 0$
10. The function $f(x)=(x-10)(x+8)$ has zeros at 10 and -8 .

What are the zeros of the function $y=4 f\left(\frac{1}{3} x\right)$?
Each point (x, y) on $y=f(x)$ corresponds to the point $\left(\frac{x}{\frac{1}{3}}, 4 y\right)$, or
$(3 x, 4 y)$ on $y=4 f\left(\frac{1}{3} x\right)$.
So, the zeros of $y=4 f\left(\frac{1}{3} x\right)$ are $3(10)$, or 30 , and $3(-8)$, or -24 .
11. Use transformations to describe how the graph of the second function compares to the graph of the first function.
a) $y=3 x+4 \quad y=-\frac{1}{2}(3(5 x)+4)$

Let $f(x)=3 x+4$, then compare $y=-\frac{1}{2}(3(5 x)+4)$ to $y=a f(b x)$:
$a=-\frac{1}{2}$ and $b=5$.
The graph of $y=-\frac{1}{2}(3(5 x)+4)$ is the image of the graph of $y=3 x+4$
after a vertical compression by a factor of $\frac{1}{2}$, a horizontal compression by a
factor of $\frac{1}{5}$, and a reflection in the x-axis.
b) $y=x^{3}-6 x \quad y=\frac{1}{4}\left[\left(-\frac{1}{2} x\right)^{3}-6\left(-\frac{1}{2} x\right)\right]$

Let $f(x)=x^{3}-6 x$, then compare $y=\frac{1}{4}\left[\left(-\frac{1}{2} x\right)^{3}-6\left(-\frac{1}{2} x\right)\right]$ to
$y=a f(b x): a=\frac{1}{4}$ and $b=-\frac{1}{2}$.
The graph of $y=\frac{1}{4}\left[\left(-\frac{1}{2} x\right)^{3}-6\left(-\frac{1}{2} x\right)\right]$ is the image of the graph of
$y=x^{3}-6 x$ after a vertical compression by a factor of $\frac{1}{4}$, a horizontal
stretch by a factor of $\frac{1}{0.5}$, or 2 , and a reflection in the y-axis
12. The graph of $y=g(x)$ is a transformation image of the graph of $y=f(x)$. Corresponding points are labelled. Write an equation of the image graph in terms of the function f.

Corresponding points are: $A(0,16)$ and $A^{\prime}(0,-8) ; B(2,0)$ and $B^{\prime}(1,0)$.

An equation for the image graph after a vertical or horizontal stretch can be written in the form $y=a f(b x)$.
A point (x, y) on $y=f(x)$ corresponds to the point $\left(\frac{x}{b}, a y\right)$ on $y=a f(b x)$.
The image of $A(0,16)$ is $\left(\frac{0}{b^{\prime}} a(16)\right)$, which is $A^{\prime}(0,-8)$.
Equate the y-coordinates: $a=-\frac{1}{2}$
The image of $\mathrm{B}(2,0)$ is $\left(\frac{2}{b^{\prime}} a(0)\right)$, which is $\mathrm{B}^{\prime}(1,0)$.
Equate the x-coordinates: $b=2$
So, an equation of $y=g(x)$ is: $y=-\frac{1}{2} f(2 x)$
13. The graph of $y=h(x)$ is a transformation image of the graph of $y=\sqrt{x}$. Corresponding points are labelled. Write an equation of the image graph in terms of x.

Corresponding points are: $A(1,1)$ and $A^{\prime}(-1,3)$
An equation for the image graph after a vertical or horizontal stretch can be written in the form $y=a \sqrt{b x}$.
A point (x, y) on $y=\sqrt{x}$ corresponds to the point $\left(\frac{x}{b^{\prime}}, a y\right)$ on $y=a \sqrt{b x}$.
So, the image of $\mathrm{A}(1,1)$ is $\left(\frac{1}{b^{\prime}} a(1)\right)$, which is $\mathrm{A}^{\prime}(-1,3)$.
Equate the x-coordinates: Equate the y-coordinates:
$\frac{1}{b}=-1 \quad a=3$
$b=-1$
So, an equation is: $y=3 \sqrt{-x}$
Verify with a different pair of corresponding points.
$\mathrm{B}(4,2)$ lies on $y=\sqrt{x}$ so $\left(\frac{4}{-1}, 3(2)\right)$, or $(-4,6)$ should lie on $y=h(x)$, which it does.
So, the equation $y=3 \sqrt{-x}$ is likely correct.
14. a) Determine the equation of the function $y=\sqrt{x}$ after each transformation.
i) a horizontal compression by a factor of $\frac{1}{9}$

The graph of $y=\sqrt{b x}$ is the image of the graph of $y=\sqrt{x}$ after a horizontal compression by a factor of $\frac{1}{b}$. Since the graph of $y=\sqrt{x}$ was horizontally compressed by a factor of $\frac{1}{9}, b=9$ and the equation of the image graph is $y=\sqrt{9 x}$, or $y=3 \sqrt{x}$.
ii) a vertical stretch by a factor of 3

The graph of $y=a \sqrt{x}$ is the image of the graph of $y=\sqrt{x}$ after a vertical stretch by a factor of a. Since the graph of $y=\sqrt{x}$ was vertically stretched by a factor of $3, a=3$ and the equation of the image graph is $y=3 \sqrt{x}$.
b) What do you notice about the equations in part a? Explain.

The equations in part a are the same. When writing the equation of the function after the horizontal compression, because 9 is a perfect square, it was brought outside the square root sign as 3 . So, the transformation can now be thought of as a vertical stretch by a factor of 3 .
c) Write the equation of a different function whose image would be the same after two different stretches or compressions. Justify your answer.

Sample response: I chose the function $y=x^{2}$. The graph of $y=4 x^{2}$ is the image of the graph of $y=x^{2}$ after a vertical stretch by a factor of 4 . The graph of $y=(2 x)^{2}$, or $y=4 x^{2}$ is the image of the graph of $y=x^{2}$ after a horizontal compression by a factor of $\frac{1}{2}$.
So, the image of $y=x^{2}$ after a vertical stretch by a factor of 4 is the same as the image of $y=x^{2}$ after a horizontal compression by a factor of $\frac{1}{2}$.

C

15. a) Write the equation of a quartic or quintic polynomial function.

Sample response: $y=x^{4}-x^{3}-x^{2}-6$
b) Sketch its graph.

The equation represents an even-degree polynomial function. Since the leading coefficient is positive, the graph opens up. The constant term is -6 , so the y-intercept is -6 . Use a table of values to create the graph.

x	y
-2	14
-1	-5
0	-6
1	-7
2	-2

c) Choose a vertical and a horizontal stretch or compression. Sketch the final image after these transformations on the grid in part b.
Sample response: I chose a horizontal compression by a factor of $\frac{1}{2}$ and a vertical compression by a factor of $\frac{1}{2}$.
Use: (x, y) on $y=x^{4}-x^{3}-x^{2}-6$ corresponds to $\left(\frac{x}{2}, \frac{1}{2} y\right)$.

(x, y)	$\left(\frac{x}{2}, \frac{1}{2} y\right)$
$(-2,14)$	$(-1,7)$
$(-1,-5)$	$(-0.5,-2.5)$
$(0,-6)$	$(0,-3)$
$(1,-7)$	$(0.5,-3.5)$
$(2,-2)$	$(1,-1)$

d) Write an equation of the final image.

Sample response: The graph of $y=x^{4}-x^{3}-x^{2}-6$ was horizontally compressed by a factor of $\frac{1}{2}$ and vertically compressed by a factor of $\frac{1}{2}$. So, $a=\frac{1}{2}$ and $b=2$. To write the equation of the final image, replace x with $2 x$ and multiply y by $\frac{1}{2}$:
$y=\frac{1}{2}\left((2 x)^{4}-(2 x)^{3}-(2 x)^{2}-6\right)$
$y=\frac{1}{2}\left(16 x^{4}-8 x^{3}-4 x^{2}-6\right)$
$y=8 x^{4}-4 x^{3}-2 x^{2}-3$
16. On the same grid:
a) Sketch the graph of $y=\frac{1}{x^{2}}+2$.
$y=\frac{1}{x^{2}}+2$ is undefined when $x=0$.
So, the line $x=0$ is a vertical asymptote.
When $|x| \rightarrow \infty, \frac{1}{x^{2}}+2 \rightarrow 2$
So, the line $y=2$ is a horizontal asymptote. Use a table of values to sketch the graph.

x	y
-2	2.25
-1	3
-0.5	6
0.5	6
1	3
2	2.25

b) Sketch the final image after a vertical stretch by a factor of 2, a reflection in the x-axis, and a horizontal compression by a factor of $\frac{1}{2}$.

The graph is vertically stretched by a factor of 2 and reflected in the x-axis, so $a=-2$. The graph is horizontally compressed by a factor of $\frac{1}{2}$, so $b=2$. Use: (x, y) on $y=\frac{1}{x^{2}}+2$ corresponds to $\left(\frac{x}{2^{\prime}}-2 y\right)$ on the final image.

(x, y)	$\left(\frac{x}{2},-2 y\right)$
$(-2,2.25)$	$(-1,-4.5)$
$(-1,3)$	$(-0.5,-6)$
$(-0.5,6)$	$(-0.25,-12)$
$(0.5,6)$	$(0.25,-12)$
$(1,3)$	$(0.5,-6)$
$(2,2.25)$	$(1,-4.5)$

c) How does the final image relate to the graph of $y=\frac{1}{x^{2}}$?

Are the asymptotes the same? Explain.
The equation of the final image is $y=-2\left(\frac{1}{(2 x)^{2}}+2\right)$

$$
\begin{aligned}
& =\frac{-2}{4 x^{2}}-4 \\
& =\frac{-1}{2 x^{2}}-4
\end{aligned}
$$

So, the final image is the graph of $y=\frac{1}{x^{2}}$ after a vertical compression by a factor of $\frac{1}{2}$, a reflection in the x-axis, and a translation of 4 units down. The vertical asymptotes are the same, but the equation of the horizontal asymptote is $y=-4$.

