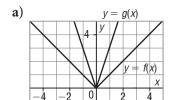
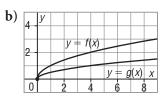
Lesson 3.4 Exercises, pages 226-232

Α

3. The graph of y = g(x) is the image of the graph of y = f(x) after a single transformation. Identify the transformation.





A horizontal compression by a factor of $\frac{1}{3}$, or a vertical stretch by a factor of 3

A vertical compression by a factor of $\frac{1}{2}$

4. Describe how the graph of each function below is related to the graph of y = f(x).

a)
$$y + 5 = -2f(x)$$

Compare y - k = af(b(x - h)) to y + 5 = -2f(x): k = -5, a = -2So, the graph of y = f(x) is vertically stretched by a factor of 2, reflected in the x-axis, then translated 5 units down.

$$\mathbf{b}) y = f(3(x-4))$$

Compare y - k = af(b(x - h)) to y = f(3(x - 4)): b = 3, h = 4So, the graph of y = f(x) is horizontally compressed by a factor of $\frac{1}{3}$, then translated 4 units right.

c)
$$y = \frac{1}{2}f(x + 7)$$

Compare y - k = af(b(x - h)) to $y = \frac{1}{2}f(x + 7)$: $a = \frac{1}{2}$, h = -7So, the graph of y = f(x) is vertically compressed by a factor of $\frac{1}{2}$, then translated 7 units left.

$$\mathbf{d}) y - 2 = f\left(\frac{1}{3}x\right)$$

Compare
$$y - k = af(b(x - h))$$
 to $y - 2 = f(\frac{1}{3}x)$: $k = 2$, $b = \frac{1}{3}$

So, the graph of y = f(x) is horizontally stretched by a factor of 3, then translated 2 units up.

- **5.** The graph of y = f(x) is transformed as described below. Write the equation of the image graph in terms of the function f.
 - a) a horizontal compression by a factor of $\frac{1}{4}$, a reflection in the *y*-axis, and a translation of 3 units left

The equation of the image graph has the form:
$$y - k = af(b(x - h))$$

Since $b = -4$ and $h = -3$, the equation is: $y = f(-4(x + 3))$

b) a vertical compression by a factor of $\frac{1}{2}$, a reflection in the *y*-axis, and a translation of 7 units up

The equation of the image graph has the form:
$$y - k = af(b(x - h))$$

Since $a = \frac{1}{2}$, $b = -1$, and $k = 7$, the equation is: $y - 7 = \frac{1}{2}f(-x)$

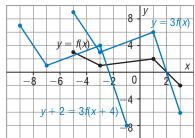
c) a horizontal stretch by a factor of 5, a vertical compression by a factor of $\frac{1}{3}$, and a translation of 6 units left and 3 units up

In
$$y - k = af(b(x - h))$$
, substitute $b = \frac{1}{5}$, $a = \frac{1}{3}$, $h = -6$, and $k = 3$.

The equation is:
$$y - 3 = \frac{1}{3}f(\frac{1}{5}(x + 6))$$

В

6. Here is the graph of y = f(x). On the same grid, sketch and label its image after a vertical stretch by a factor of 3, and a translation of 4 units left and 2 units down.



Perform the vertical stretch by a factor of 3 first. Point (x, y) on y = f(x) corresponds to point (x, 3y) on the image graph y = 3f(x).

Point on	Point on
y = f(x)	y=3f(x)
(-5, 3)	(-5, 9)
(-3, 1)	(-3, 3)
(1, 2)	(1, 6)
(3, -2)	(3, -6)

Plot the points, then join them in order with line segments to form the graph of y = 3f(x). Then translate this graph 4 units left and 2 units down to form the graph of y + 2 = 3f(x + 4).

7. Here is the graph of y = f(x). On the same grid, sketch the graph of each function below then state its domain and range.

$$y + 1 = 3f(-(x - 4))$$
 $y = f(x)$
 $y = f(x)$

a)
$$y - 3 = -\frac{1}{2}f(2(x + 1))$$

Compare:
$$y - k = af(b(x - h))$$
 to $y - 3 = -\frac{1}{2}f(2(x + 1))$

$$k = 3$$
, $a = -\frac{1}{2}$, $b = 2$, and $h = -1$

$$(x, y)$$
 corresponds to $\left(\frac{x}{2} - 1, -\frac{1}{2}y + 3\right)$

Point on $y = f(x)$	Point on $y - 3 = -\frac{1}{2}f(2(x + 1))$
(-4, 4)	(-3, 1)
(0, 0)	(-1, 3)
(4, 4)	(1, 1)

The domain is: $x \in \mathbb{R}$ The range is: $y \le 3$

b)
$$y + 1 = 3f(-(x - 4))$$

Compare:
$$y - k = af(b(x - h))$$
 to $y + 1 = 3f(-(x - 4))$
 $k = -1$, $a = 3$, $b = -1$, and $h = 4$

$$(x, y)$$
 corresponds to $(-x + 4, 3y - 1)$

Point on $y = f(x)$	Point on $y + 1 = 3f(-(x - 4))$
(-4, 4)	(8, 11)
(0, 0)	(4, -1)
(4, 4)	(0, 11)

The domain is: $x \in \mathbb{R}$

The range is: $y \ge -1$

8. On each grid, graph $y = \sqrt{x}$, apply transformations to sketch the given function, then state its domain and range.

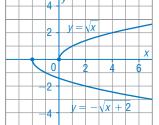
a)
$$y = -\sqrt{x+2}$$

$$y = -\sqrt{x - (-2)}$$

 $a = -1$ and $h = -2$

(x, y) corresponds to (x - 2, -y)

Point on $y = \sqrt{x}$	Point on $y = -\sqrt{x+2}$
(0, 0)	(-2, 0)
(1, 1)	(-1, -1)
(9, 3)	(7, -3)



Domain is: $x \ge -2$

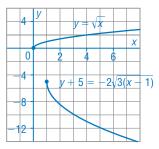
Range is: $y \le 0$

b)
$$y + 5 = -2\sqrt{3(x-1)}$$

$$k = -5$$
, $a = -2$, $b = 3$, and $h = 1$

(x, y) corresponds to $\left(\frac{x}{3} + 1, -2y - 5\right)$

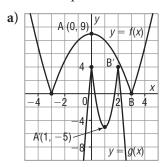
Point on $y = \sqrt{x}$	Point on $y + 5 = -2\sqrt{3(x - 1)}$
(0, 0)	(1, -5)
(1, 1)	$\left(\frac{4}{3}, -7\right)$
(9, 3)	(4, -11)



Domain is: $x \ge 1$

Range is: $y \le -5$

9. The graph of y = g(x) is the image of the graph of y = f(x) after a combination of transformations. Corresponding points are labelled. Write an equation of each image graph in terms of the function f.



Write the equation for the image graph in the form y - k = af(b(x - h)). Use the points A(0, 9) and B(3, 0) on the graph of y = f(x). Horizontal distance between A and B is: 3 Vertical distance between A and B is: 9 Use corresponding points A'(1, -5) and B'(2, 4) on the graph of y = g(x).

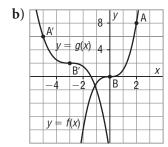
Horizontal distance between A' and B' is: 1 Vertical distance between A' and B' is: 9

The horizontal distance is one-third of the original distance, so the graph of y = f(x) is compressed horizontally by a factor of $\frac{1}{3}$: b = 3.

The vertical distance does not change, so the graph of y = f(x) is not compressed or stretched vertically. From the graph, there is a reflection in the x-axis, so a = -1. To determine the coordinates of B(3, 0) after this compression and reflection, substitute: x = 3, y = 0, a = -1, and b = 3 in $\left(\frac{x}{b}, ay\right)$ to get $\left(\frac{3}{3}, 0\right)$, or (1, 0). Determine the translation that

would move (1, 0) to B'(2, 4).

A translation of 1 unit right and 4 units up is required, so h = 1 and k = 4. An equation for the image graph is: y - 4 = -f(3(x - 1))



Write the equation for the image graph in the form y - k = af(b(x - h)). Use the points A(2, 8) and B(0, 0) on the graph of y = f(x).

Horizontal distance between A and B is: 2 Vertical distance between A and B is: 8 Use corresponding points A'(-5, 6) and B'(-3, 2) on the graph of y = g(x). Horizontal distance between A' and B' is: 2

Vertical distance between A' and B' is: 4

The horizontal distance does not change, so the graph of y = f(x) is not compressed or stretched horizontally. From the graph, there is a reflection in the y-axis, so b = -1.

The vertical distance is halved, so the graph of y = f(x) is compressed vertically by a factor of $\frac{1}{2}$: $a = \frac{1}{2}$. To determine the coordinates of

A(2, 8) after this compression and reflection, substitute: x = 2, y = 8,

b = -1, and $a = \frac{1}{2} \ln \left(\frac{x}{b'}, ay \right)$ to get $\left(\frac{2}{-1'}, \frac{1}{2}(8) \right)$, or (-2, 4).

Determine the translation that would move (-2, 4) to A'(-5, 6). A translation of 3 units left and 2 units up is required, so h = -3 and

k = 2. An equation for the image graph is: $y - 2 = \frac{1}{2}f(-(x + 3))$

10. For each pair of functions below, describe the graph of the second function as a transformation image of the graph of the first function.

a)
$$y = |x|$$
 $y + 6 = -2|3(x - 4)|$
Let $f(x) = |x|$, then compare $y + 6 = -2|3(x - 4)|$ to $y - k = af(b(x - h))$: $k = -6$, $a = -2$, $b = 3$, and $h = 4$.
The graph of $y + 6 = -2|3(x - 4)|$ is the image of the graph of $y = |x|$ after a vertical stretch by a factor of 2, a horizontal compression by a factor of $\frac{1}{3}$, a reflection in the x -axis, followed by a translation of 4 units right and 6 units down.

b)
$$y=\frac{1}{x}$$
 $y-3=2\Big(\frac{5}{x+1}\Big)$
Let $f(x)=\frac{1}{x'}$, then compare $y-3=2\Big(\frac{5}{x+1}\Big)$
to $y-k=af(b(x-h))$: $k=3$, $a=2$, $b=5$, and $h=-1$.
The graph of $y-3=2\Big(\frac{5}{x+1}\Big)$ is the image of the graph of $y=\frac{1}{x}$ after a vertical stretch by a factor of 2, a horizontal compression by a factor of $\frac{1}{5}$, followed by a translation of 1 unit left and 3 units up.

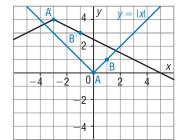
c)
$$y = x^4$$
 $y + 1 = \frac{1}{4}[-2(x+3)]^4$
Let $f(x) = x^4$, then compare $y + 1 = \frac{1}{4}[-2(x+3)]^4$
to $y - k = af(b(x-h))$: $k = -1$, $a = \frac{1}{4}$, $b = -2$, and $h = -3$.
The graph of $y + 1 = \frac{1}{4}[-2(x+3)]^4$ is the image of the graph of $y = x^4$ after a vertical compression by a factor of $\frac{1}{4}$, a horizontal compression by a factor of $\frac{1}{2}$, a reflection in the y -axis, followed by a translation of 3 units left and 1 unit down.

11. A transformation image of the graph of y = f(x) is represented by the equation $y - 1 = -2f\left(\frac{x+5}{3}\right)$. The point (7, 5) lies on the image graph. What are the coordinates of the corresponding point on the graph of y = f(x)?

Compare
$$y - 1 = -2f\left(\frac{x+5}{3}\right)$$
 to $y - k = af(b(x-h))$:
 $k = 1, a = -2, b = \frac{1}{3}$, and $h = -5$
A point (x, y) on $y = f(x)$ corresponds to the point $(3x - 5, -2y + 1)$ on $y - 1 = -2f\left(\frac{x+5}{3}\right)$. The image of a point (x, y) is $(7, 5)$.
So, $3x - 5 = 7$, or $x = 4$; and $-2y + 1 = 5$, or $y = -2$
So, the corresponding point on $y = f(x)$ is $(4, -2)$.

C

12. This graph is the image of the graph of y = |x| after a combination of transformations. Write an equation of the image.



Write the equation for the image graph in the form y - k = a|b(x - h)|. Sketch the graph of y = |x|.

Use the points A(0, 0) and B(1, 1) on the graph of y = |x|.

Horizontal distance between A and B is: 1

Vertical distance between A and B is: 1

Use corresponding points A'(-3, 4) and B'(-1, 3) on the image graph.

Horizontal distance between A' and B' is: 2

Vertical distance between A' and B' is: 1

The horizontal distance is doubled, so the graph of y = |x| is stretched horizontally by a factor of 2 and $b = \frac{1}{2}$.

The vertical distance does not change, so the graph of y = |x| is not compressed or stretched vertically. From the graph, there is a reflection in the x-axis, so a = -1.

To determine the coordinates of B(1, 1) after this stretch and reflection, substitute: x = 1, y = 1, $b = \frac{1}{2}$, and a = -1 in $\left(\frac{x}{b}, ay\right)$ to get (2, -1).

Determine the translation that would move (2, -1) to B'(-1, 3). A translation of 3 units left and 4 units up is required, so h = -3 and

An equation for the image graph is: $y - 4 = -\left|\frac{1}{2}(x + 3)\right|$, or $y-4=-\frac{1}{2}|x+3|$

Use mental math to check this equation, by verifying that the point (1, 2) lies on the graph.