PRACTICE TEST, pages 261-264

- **1. Multiple Choice** The graph of $y + 2 = -3f(\frac{1}{2}(x+5))$ is the image of the graph of y = f(x) after several transformations. Which statement about how the graph of y = f(x) was transformed is false?
 - **A.** The graph was reflected in the *x*-axis.
 - **B.** The graph was horizontally stretched by a factor of 2.
 - C. The graph was translated 2 units down.
 - \bigcirc The graph was reflected in the *y*-axis.
- **2. Multiple Choice** Which statement about a function and its inverse is not always true?
 - (A.) The inverse of a function is a function.
 - **B.** The domain of a function is the range of its inverse, and the range of a function is the domain of its inverse.
 - **C.** The graph of the inverse of a function can be sketched by reflecting the graph of the function in the line y = x.
 - **D.** Each point (x, y) on the graph of a function corresponds to the point (y, x) on the graph of its inverse.
- **3.** Write an equation of the function $y = \sqrt{x-3}$ after each transformation below.
 - a) a translation of 2 units right and 5 units down

The equation of the image graph has the form $y - k = \sqrt{(x - h) - 3}$, where k = -5 and h = 2. So, an equation of the image graph is: $y + 5 = \sqrt{x - 5}$

b) a reflection in the *x*-axis

The *y*-coordinates of points on the graph of $y = \sqrt{x-3}$ change sign. So, an equation of the image graph is: $y = -\sqrt{x-3}$

c) a reflection in the y-axis

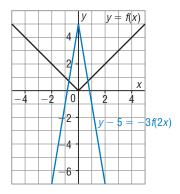
The x-coordinates of points on the graph of $y = \sqrt{x-3}$ change sign. So, an equation of the image graph is: $y = \sqrt{-x-3}$ **d**) a vertical stretch by a factor of 2 and a horizontal compression by a factor of $\frac{1}{3}$

The equation of the image graph has the form $y=a\sqrt{bx-3}$, where a=2 and b=3. So, an equation of the image graph is: $y=2\sqrt{3x-3}$

4. Here is the graph of y = f(x). On the same grid, use transformations to sketch the

transformations to sketch the graph of y - 5 = -3f(2x). Describe the transformations.

Compare:
$$y - k = af(b(x - h))$$
 to $y - 5 = -3f(2x)$ $k = 5$, $a = -3$, $b = 2$, and $h = 0$ A point (x, y) on $y = f(x)$ corresponds to the point $\left(\frac{x}{b} + h, ay + k\right)$ on



$$y - k = af(b(x - h)).$$

Substitute the values above.

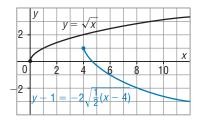
A point on y - 5 = -3f(2x) has coordinates $\left(\frac{x}{2}, -3y + 5\right)$.

Transform some points on the lines.

Point on $y = f(x)$	Point on $y - 5 = -3f(2x)$
(-4, 4)	(-2, -7)
(0, 0)	(0, 5)
(4, 4)	(2, -7)

Draw 2 lines through the points for the graph of y-5=-3f(2x). The graph of y=f(x) was compressed horizontally by a factor of $\frac{1}{2}$, stretched vertically by a factor of 3, reflected in the x-axis, then translated 5 units up.

- **5.** Here is the graph of $y = \sqrt{x}$.
 - a) Use this graph to sketch a graph of $y 1 = -2\sqrt{\frac{1}{2}(x 4)}$.



Compare: y - k = af(b(x - h)) to

$$y-1=-2\sqrt{\frac{1}{2}(x-4)}$$

$$k = 1$$
, $a = -2$, $b = \frac{1}{2}$, and $h = 4$

A point (x, y) on y = f(x) corresponds to the point $\left(\frac{x}{b} + h, ay + k\right)$ on y - k = af(b(x - h)).

Substitute the values above.

A point on $y - 1 = -2\sqrt{\frac{1}{2}(x - 4)}$ has coordinates: (2x + 4, -2y + 1)

Transform some points on $y = \sqrt{x}$.

Point on $y = \sqrt{x}$	Point on $y - 1 = -2\sqrt{\frac{1}{2}(x - 4)}$
(0, 0)	(4, 1)
(1, 1)	(6, -1)
(4, 2)	(12, -3)

Join the points with a smooth curve for the graph of

$$y-1=-2\sqrt{\frac{1}{2}(x-4)}$$
.

b) Write the domain and range of the function in part a.

From the graph, the domain is $x \ge 4$; and the range is $y \le 1$.

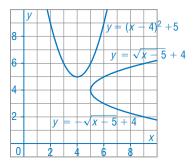
6. a) Determine an equation of the inverse of $y = (x - 4)^2 + 5$.

Interchange x and y in the equation.

$$x = (y - 4)^2 + 5$$
 Solve for y.
 $(y - 4)^2 = x - 5$

$$y - 4 = \pm \sqrt{x - 5}$$
$$y = \pm \sqrt{x - 5} + 4$$

b) Sketch the graph of the inverse. Is the inverse a function? Explain.



Graph
$$y = (x - 4)^2 + 5$$
.

This is the graph of $y = x^2$ after a translation of 4 units right and 5 units up.

Interchange the coordinates of points on this graph, then plot the new points to get the graph of $y = \pm \sqrt{x-5} + 4$.

No, the inverse is not a function because its graph does not pass the vertical line test.

c) If your answer to part b is yes, explain how you know. If your answer to part b is no, determine a possible restriction on the domain of $y = (x - 4)^2 + 5$ so its inverse is a function, then write the equation of the inverse function.

The domain can be restricted by considering each part of the graph of $y = (x - 4)^2 + 5$ to the right and left of the vertex.

So, one restriction is $x \ge 4$ and the equation of the inverse function is: $y = \sqrt{x - 5} + 4$

Another restriction is $x \le 4$ and the equation of the inverse function is: $y = -\sqrt{x-5} + 4$