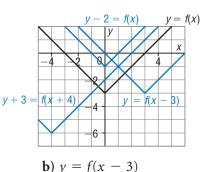
REVIEW, pages 255-260

3.1

 Here is the graph of y = f(x). Sketch the graph of each function below. Write the domain and range of each translation image.



a)
$$y - 2 = f(x)$$

Each point on the graph of y = f(x) is translated 2 units up. From the graph, the domain is: $x \in \mathbb{R}$; the range is: $y \ge -1$ Each point on the graph of y = f(x) is translated 3 units right. From the graph, the domain is: $x \in \mathbb{R}$; the range is: $y \ge -3$

c) y + 3 = f(x + 4)

Each point on the graph of y = f(x) is translated 4 units left and 3 units down. From the graph, the domain is: $x \in \mathbb{R}$; the range is: $y \ge -6$

2. The graph of the function $y = x^3 - 2$ is translated 3 units left and 4 units up. Write the equation of the translation image.

The equation of the translation image has the form $y - k = (x - h)^3 - 2$, with h = -3 and k = 4So, the equation is: $y - 4 = (x + 3)^3 - 2$, which simplifies to $y = (x + 3)^3 + 2$

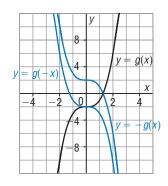
3.2

3. Here is the graph of y = g(x). On the same grid, sketch the graph of each function below. Write the domain and range of each reflection image.

a)
$$y = -g(x)$$

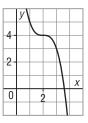
b) y = g(-x)

Reflect points on y = g(x) in the x-axis: (-2, -10) becomes (-2, 10)(0, -2) becomes (0, 2)(2, 6) becomes (2, -6)Draw a smooth curve through the points for the graph of y = -g(x). The domain is: $x \in \mathbb{R}$ The range is: $y \in \mathbb{R}$ Reflect points on y = g(x) in the y-axis: (-2, -10) becomes (2, -10)(0, -2) stays as (0, -2)(2, 6) becomes (-2, 6)Draw a smooth curve through the points for the graph of y = g(-x). The domain is: $x \in \mathbb{R}$ The range is: $y \in \mathbb{R}$



4. The graph of $f(x) = (x - 2)^3 - 4$ was reflected in the *x*-axis and its image is shown. What is an equation of the image?

When the graph of y = f(x) is reflected in the *x*-axis, the equation of the image is y = -f(x). So, an equation of the image is: $f(x) = -[(x - 2)^3 - 4]$ $f(x) = -(x - 2)^3 + 4$



3.3

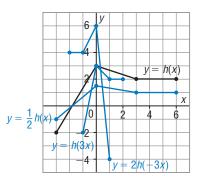
5. Here is the graph of y = h(x). Sketch the graph of each function below. Write the domain and range of each transformation image.

a)
$$y = h(3x)$$

b)
$$y = \frac{1}{2}h(x)$$

The graph of y = h(x) is compressed horizontally by a factor of $\frac{1}{3}$.

For each point at the ends of the line segments on y = h(x), divide the *x*-coordinate by 3, plot the new points then join them for the graph of y = h(3x). The domain is: $-1 \le x \le 2$ The range is: $-2 \le y \le 3$ The graph of y = h(x) is compressed vertically by a factor of $\frac{1}{2}$. For each point at the ends of the line segments on y = h(x), divide the *y*-coordinate by 2, plot the new points then join them for the graph of $y = \frac{1}{2}h(x)$. The domain is: $-3 \le x \le 6$ The range is: $-1 \le y \le 1.5$

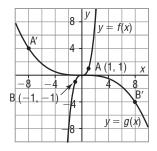


c) y = 2h(-3x)

The graph of y = h(x) is stretched vertically by a factor of 2, compressed horizontally by a factor of $\frac{1}{3}$, then reflected in the *y*-axis. Use: (x, y) on y = h(x) corresponds to $\left(-\frac{x}{3}, 2y\right)$ on y = 2h(-3x)

Point on $y = h(x)$	Point on $y = 2h(-3x)$
(-3, -2)	(1, -4)
(0, 3)	(0, 6)
(3, 2)	(-1, 4)
(6, 2)	(-2, 4)

Plot the points, then join them. The domain is: $-2 \le x \le 1$ The range is: $-4 \le y \le 6$ 6. The graph of y = g(x) is the image of the graph of y = f(x) after a transformation. Corresponding points are labelled. Write an equation of the image graph in terms of the function *f*.



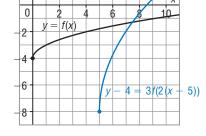
The graph has not been translated, so an equation of the image graph has the form: y = af(bx)

A point (x, y) on y = f(x) corresponds to the point $\left(\frac{x}{b}, ay\right)$ on y = af(bx). The image of A(1, 1) is $\left(\frac{1}{b}, 1a\right)$, which is A'(-8, 4). Compare coordinates: $b = -\frac{1}{8}$ and a = 4An equation for y = g(x) is: $y = 4f\left(-\frac{1}{8}x\right)$

3.4

7. Here is the graph of y = f(x). On the same grid, sketch the graph of y - 4 = 3f(2(x - 5)). Write the domain and range of the transformation image.

Compare: y - k = af(b(x - h))to y - 4 = 3f(2(x - 5))k = 4, a = 3, b = 2, and h = 5A point (x, y) on the graph of y = f(x) corresponds to the point

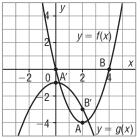


 $\left(\frac{x}{2} + 5, 3y + 4\right)$ on the graph of y - 4 = 3f(2(x - 5)).

Point on $y = f(x)$	Point on $y - 4 = 3f(2(x - 5))$
(0, -4)	(5, -8)
(1, -3)	(5.5, -5)
(4, -2)	(7, -2)
(9, -1)	(9.5, 1)

Plot the points, then join them.

From the graph of y - 4 = 3f(2(x - 5)), the domain is: $x \ge 5$; and the range is: $y \ge -8$ 8. The graph of y = g(x) is the image of the graph of y = f(x) after a combination of transformations. Corresponding points are labelled. Write an equation of the image graph in terms of the function *f*.



The equation of the image graph can be written as: y - k = af(b(x - h))The horizontal distance between A and B is 2. The vertical distance between A and B is 4. The horizontal distance between A' and B' is 2. The vertical distance between A' and B' is 2. The vertical distance between A' and B' is 2. The graph of y = f(x) has been compressed vertically by a factor of $\frac{1}{2}$ and reflected in the *x*-axis, so $a = -\frac{1}{2}$. There is no horizontal stretch or compression, so b = 1. Since B(4, 0) lies on the *x*-axis, it will not move after the vertical compression and reflection. Determine the translation that would move B(4, 0) to B'(2, -3). A translation of 2 units left and 3 units down is required, so h = -2 and k = -3An equation for the image graph is: $y + 3 = -\frac{1}{2}f(x + 2)$

9. The point (2, 2) lies on the graph of $y = \frac{1}{4}x^3$. After a combination of transformations, the equation of the image graph is $y + 6 = 5\left(\frac{1}{4}(2(x-3))^3\right)$. What are the coordinates of the point that is the image of (2, 2)?

Compare:
$$y + 6 = 5\left(\frac{1}{4}(2(x-3))^3\right)$$
 with $y - k = af(b(x-h))$:
 $k = -6, a = 5, b = 2$, and $h = 3$
A point (x, y) on the graph of $y = \frac{1}{4}x^3$ corresponds to the point
 $\left(\frac{x}{2} + 3, 5y - 6\right)$ on the graph of $y + 6 = 5\left(\frac{1}{4}(2(x-3))^3\right)$.
Substitute $x = 2$ and $y = 2$ in the expression for the coordinates above
 $\left(\frac{2}{2} + 3, 5(2) - 6\right) = (4, 4)$
The image of $(2, 2)$ has coordinates $(4, 4)$.

3.5

10. Determine an equation of the inverse of each function, then sketch graphs of the function and its inverse.

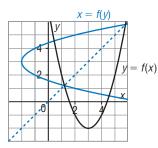
a)
$$y = -\frac{2}{5}x + 3$$

 $y = -\frac{2}{5}x + 3$
 $y = (x - 3)^2 + 7$
 $y = (x - 3)^2 + 7$
Write: $x = -\frac{2}{5}y + 3$
Solve for y.
 $5x = -2y + 15$
 $2y = -5x + 15$
 $y = \frac{-5x + 15}{2}$
The graph of $y = -\frac{2}{5}x + 3$ is a line
with y-intercept 3 and slope $-\frac{2}{5}$.
Reflect points on the graph of
 $y = -\frac{2}{5}x + 3$ in the line $y = x$.
Join the points for the graph
of $y = \frac{-5x + 15}{2}$.
 $y = \frac{-5x + 15}{2}$.
 $y = \frac{-5x + 15}{2}$.
 $y = -\frac{2}{5}x + 3$ in the line $y = x$.
Join the points for the graph
of $y = \frac{-5x + 15}{2}$.
 $y = \frac{-5x +$

1

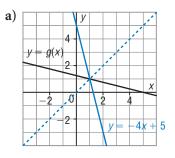
of

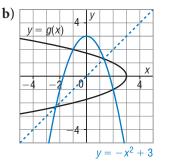
11. Restrict the domain of the function y = f(x) so its inverse is a function.



Sample response: Sketch the graph of the inverse by reflecting points in the line y = x. The inverse is a function if the domain of y = f(x) is restricted to $x \le 3$ or $x \geq 3$.

12. A graph was reflected in the line y = x. Its reflection image y = g(x) is shown. Determine an equation of the original graph in terms of *x* and *y*.





Use the line y = x to sketch the graph of the inverse. This line has y-intercept 5, and slope -4, so its equation is: y = -4x + 5

Use the line y = x to sketch the graph of the inverse. This curve is a parabola that has vertex (0, 3), and is congruent to $y = -x^2$. So, its equation is: $y = -x^2 + 3$