Lesson 4.1 Math Lab: Assess Your Understanding, pages 268–271

1. Use the graphs of y = f(x) and y = g(x) on page 269 to sketch the graph of each function below, then identify its domain and range. Estimate the range, where necessary.

a)
$$y = f(x) + g(x)$$

b) $y = f(x) - g(x)$
c) $y = f(x) \cdot g(x)$
d) $y = \frac{f(x)}{g(x)}$

Ø

From t	n the graphs:								
x	f(x)	<i>g</i> (x)	f(x) + g(x)	f(x) - g(x)	$f(x) \cdot g(x)$	$\frac{f(x)}{g(x)}$			
-2	5	-1	4	6	-5	-5			
-1	0	0	0	0	0	undefined			
0	-3	1	-2	-4	-3	-3			
1	-4	2	-2	-6	-8	-2			
2	-3	3	0	-6	-9	-1			

-4

Ø

Ø

Plot points at: (-2, 4), (-1, 0), (0, -2), (1, -2), (2, 0), (3, 4)Join the points with a smooth curve. Domain: $x \in \mathbb{R}$ Range: $y \ge -2.25$

Plot points at: (-2, 6), (-1, 0), (0, -4), (1, -6), (2, -6), (3, -4), (4, 0)Join the points with a smooth curve. Domain: $x \in \mathbb{R}$ Range: $y \ge -6.25$

Plot points at: (-2, -5), (-1, 0), (0, -3), (1, -8), (2, -9), (3, 0)Join the points with a smooth curve. Domain: $x \in \mathbb{R}$ Range: $y \in \mathbb{R}$

Plot points at: (-2, -5), (0, -3), (1, -2), (2, -1), (3, 0), (4, 1)Since these points lie on a line, draw an open circle at (-1, -4), then draw a line through the points. Domain: $x \neq -1$ Range: $y \neq -4$

- **2.** Use the graphs of y = f(x) and y = g(x). **a**) State the domain and range of y = f(x).
- Free da

From the graph: domain: $x \ge -2$; range: $y \ge 0$

b) State the domain and range of y = g(x).

From the graph: domain: $x \in \mathbb{R}$; range: $y \in \mathbb{R}$

c) Sketch the graph of $y = f(x) \cdot g(x)$.

Ø

Ø

Ø

From the graphs:

x	<i>f</i> (<i>x</i>)	<i>g</i> (<i>x</i>)	$f(x) \cdot g(x)$
-2	0	8	0
-1	1	6	6
0	≐ 1.4	4	≐ 5.6
1	≐ 1.7	2	≐ 3.4
2	2	0	0
3	≐ 2.2	-2	≐ -4.4

Plot points at: (-2, 0), (-1, 6), (0, 5.6), (1, 3.4), (2, 0), (3, -4.4)Join the points with a smooth curve.

d) What is the domain of $y = f(x) \cdot g(x)$? How is it related to the domains of y = f(x) and y = g(x)?

The domain of $y = f(x) \cdot g(x)$ is: $x \ge -2$ This domain is the same as the domain of y = f(x). It is not equal to the domain of y = g(x), which is all real numbers, because the graph of $y = f(x) \cdot g(x)$ does not extend to the left of x = -2.

- **3.** Use the graphs of y = f(x) and y = g(x).
 - **a**) What are the domain and range of y = f(x)?
 - The domain is: $x \ge 0$ The range is: $y \ge 0$

Ø

Ø

Ø

Ø

4

b) What are the domain and range of y = g(x)?

The domain is: $x \in \mathbb{R}$ The range is: $y \ge 0$

c) Consider the function h(x) = f(x) + g(x). Without graphing, determine the domain and the range of this function and justify your answer.

The domain of h(x) is the same as the domain of f(x), because x cannot be negative; that is, $x \ge 0$. The range of h(x) is the same as the ranges of f(x) and g(x); that is, all real numbers greater than or equal to 0: $y \ge 0$.

d) Use the graphs in parts a and b to sketch the graph of h(x).Use the graph to verify the domain and range.

From the graphs:

x	<i>f</i> (<i>x</i>)	g (x)	f(x) + g(x)
0	0	0	0
1	1	1	2
2	≐ 1.4	2	≐ 3.4
3	≐ 1.7	3	≐ 4.7
4	2	4	6

Plot points at: (0, 0), (1, 2), (2, 3.4), (3, 4.7), (4, 6) Join the points with a smooth curve.

From the graphs, the domain and range are the same as given in part c.