Α

- **3.** Given $f(x) = x^3$ and $g(x) = x^2 + 1$, write an explicit equation for each combination.
 - a) h(x) = f(x) + g(x) $h(x) = x^3 + x^2 + 1$ b) d(x) = f(x) - g(x) $d(x) = x^3 - x^2 - 1$
 - c) $p(x) = f(x) \cdot g(x)$ $p(x) = x^3(x^2 + 1)$ d) $q(x) = \frac{f(x)}{g(x)}$ $q(x) = \frac{x^3}{x^2 + 1}$
- **4.** For each function *h*(*x*) below, write explicit equations for *f*(*x*) and *g*(*x*) so that:

i)
$$h(x)$$
 is the sum $f(x) + g(x)$
ii) $h(x)$ is the difference $f(x) - g(x)$
a) $h(x) = x^2 + 3x - 4$
b) $h(x) = x^3 - x^2 + 8$
Sample answers:
i) $h(x) = x^2 + (3x - 4)$
i) $h(x) = x^2 + (3x - 4)$
ii) $h(x) = x^2 - (-3x + 4)$
ii) $h(x) = x^3 - x^2 + 8$
f(x) = x^2 and g(x) = 3x - 4
ii) $h(x) = x^2 - (-3x + 4)$
ii) $h(x) = x^3 - (x^2 - 8)$
f(x) = x^2 and g(x) = x^2 - 8
g(x) = -3x + 4

В

- **5.** Use f(x) = 2x 4 and g(x) = -x + 2.
 - **a**) Write an explicit equation for h(x).

i) h(x) = f(x) + g(x) h(x) = 2x - 4 + (-x + 2) h(x) = x - 2ii) h(x) = g(x) + f(x) h(x) = -x + 2 + 2x - 4h(x) = x - 2

- iii) h(x) = f(x) g(x) h(x) = 2x - 4 - (-x + 2) h(x) = 3x - 6iv) h(x) = g(x) - f(x) h(x) = -x + 2 - (2x - 4)h(x) = -3x + 6
- **v**) $h(x) = f(x) \cdot g(x)$ **i** h(x) = (2x - 4)(-x + 2) $h(x) = -2x^2 + 8x - 8$ **vi**) $h(x) = g(x) \cdot f(x)$ h(x) = (-x + 2)(2x - 4) $h(x) = -2x^2 + 8x - 8$

b) For part a, compare the answers to parts i and ii; parts iii and iv; and parts v and vi. Explain the results.

The answers to parts i and ii are the same because addition is commutative. The answers to parts iii and iv are opposites because subtraction is not commutative. The answers to parts v and vi are the same because multiplication is commutative.

- 6. Given that $f(x) = x^2 4$, g(x) = 2x 1, and $h(x) = 3 x^3$, write an explicit equation for k(x), then state its domain.
 - **a**) k(x) = f(x) + g(x) + h(x) **b**) k(x) = f(x) g(x) + h(x) $k(x) = x^{2} - 4 + 2x - 1 + k(x) = x^{2} - 4 - (2x - 1) + 3 - x^{3}$ $k(x) = -x^{3} + x^{2} + 2x - 2$ $k(x) = -x^{3} + x^{2} - 2x$ This is a cubic function; its This is a cubic function; its domain is: $x \in \mathbb{R}$ domain is: $x \in \mathbb{R}$
 - c) $k(x) = f(x) + g(x) \cdot h(x)$ d) $k(x) = g(x) \cdot f(x) h(x)$

 $k(x) = x^2 - 4 + (2x - 1)(3 - x^3)$ $k(x) = (2x - 1)(x^2 - 4) - (3 - x^3)$ $k(x) = x^{2} - 4 + 6x - 2x^{4} - 3 + x^{3}$ $k(x) = 2x^{3} - 8x - x^{2} + 4 - 3 + x^{3}$ $k(x) = -2x^4 + x^3 + x^2 + 6x - 7$ $k(x) = 3x^3 - x^2 - 8x + 1$ This is a quartic function; its domain This is a cubic function; its domain is: is: $x \in \mathbb{R}$ $\boldsymbol{X} \in \mathbb{R}$

- **7.** Use the function $k(x) = x^2 3x 28$.
 - **a**) Write explicit equations for three functions f(x), g(x), and h(x) so that k(x) = f(x) + g(x) + h(x).

Sample response: $k(x) = x^2 - 3x - 28$ $k(x) = (x^2) + (-3x) + (-28)$ $f(x) = x^2$; g(x) = -3x; h(x) = -28

b) Write explicit equations for two functions f(x) and g(x) so that $k(x) = f(x) \cdot g(x).$

Sample response: $k(x) = x^2 - 3x - 28$ Factor: k(x) = (x - 7)(x + 4)f(x) = x - 7; g(x) = x + 4

6

- 8. For each function h(x) below, write explicit equations for f(x) and g(x) so that:
 - i) h(x) is the sum f(x) + g(x)ii) h(x) is the difference f(x) - g(x)iii) h(x) is the product $f(x) \cdot g(x)$ iv) h(x) is the quotient $\frac{f(x)}{g(x)}$ **b**) $h(x) = \sqrt{x}$ **a)** $h(x) = x^2$ Sample response: i) Subtract and add the i) Subtract and add the same term. same term. $h(x) = x^2 - x + x$ $h(x) = \sqrt{x} - x + x$ $f(x) = x^2 - x; q(x) = x$ $f(x) = \sqrt{x} - x; g(x) = x$ ii) Add and subtract the ii) Add and subtract the same term. same term. $h(x) = x^2 + x - x$ $h(x) = \sqrt{x} + x - x$ $f(x) = x^2 + x; q(x) = x$ $f(x) = \sqrt{x} + x; q(x) = x$ iii) Write x^2 as a product. iii) Multiply \sqrt{x} by a term that is h(x) = (x)(x)equal to 1. f(x) = x; q(x) = x $h(x) = \sqrt{x}\left(\frac{2}{2}\right)$ iv) Multiply and divide x^2 by the $f(x) = 2\sqrt{x}; g(x) = \frac{1}{2}$ same non-zero expression. $h(x) = \frac{x^2(x^2 + 1)}{x^2 + 1}$ iv) Multiply and divide \sqrt{x} by the same non-zero $f(x) = x^2(x^2 + 1);$ expression. $q(x) = x^2 + 1$ $h(x) = \sqrt{x} \left(\frac{2+x^2}{2+x^2}\right)$ $f(x) = (2 + x^2)\sqrt{x};$ $q(x) = 2 + x^2$
- **9.** Use f(x) = |x 4| and $g(x) = x^2$.
 - **a**) State the domain and range of f(x) and of g(x).

f(x) is an absolute value function; the domain is $x \in \mathbb{R}$ and the range is $y \ge 0$. g(x) is a quadratic function whose graph has vertex (0, 0) and opens up; the domain is $x \in \mathbb{R}$, and the range is $y \ge 0$.

b) Given h(x) = f(x) + g(x), write an explicit equation for h(x), then determine its domain and range.

 $h(x) = |x - 4| + x^2$ Since the domains of f(x) and g(x) are equal, then the domain of h(x) is $x \in \mathbb{R}$. Use technology to graph the function; the minimum value is 3.75 at x = 0.5, so the range is $y \ge 3.75$. c) Given d(x) = f(x) - g(x), write an explicit equation for d(x), then determine its domain and range.

 $d(x) = |x-4| - x^2$

Since the domains of f(x) and g(x) are equal, then the domain of d(x) is $x \in \mathbb{R}$. Use technology to graph the function; the maximum value is 4.25 at x = -0.5, so the range is $y \le 4.25$.

10. Use $f(x) = x^3 - x$ and $g(x) = \frac{1}{x + 3}$.

a) State the domain and range of f(x) and of g(x).

f(*x*) is a cubic function; the domain is $x \in \mathbb{R}$ and the range is $y \in \mathbb{R}$. *g*(*x*) is a reciprocal function; the domain is $x \neq -3$, and the range is $y \neq 0$.

b) Given h(x) = f(x) + g(x), write an explicit equation for h(x), then determine its domain and range.

 $h(x) = x^3 - x + \frac{1}{x+3}$

The domain of h(x) is the set of values of x that are common to the domains of f(x) and g(x), so the domain is $x \neq -3$. Use technology to graph the function; the approximate range is $y \leq -34.5$ or $y \geq -14.2$.

c) Given $p(x) = f(x) \cdot g(x)$, write an explicit equation for p(x), then determine its domain and range.

 $p(x)=\frac{x^3-x}{x+3}$

The domain of p(x) is the set of values of x that are common to the domains of f(x) and g(x), so the domain is $x \neq -3$. Use technology to graph the function; the range is $y \in \mathbb{R}$.

- **11.** Use $f(x) = \sqrt{x+2}$ and g(x) = |x-2|.
 - **a**) State the domain and range of f(x) and of g(x).

f(x) is a square root function; the domain is $x \ge -2$ and the range is $y \ge 0$. g(x) is an absolute value function; the domain is $x \in \mathbb{R}$, and the range is $y \ge 0$.

b) Given $p(x) = f(x) \cdot g(x)$, write an explicit equation for p(x), then determine its domain and range.

 $p(x)=\sqrt{x+2}\cdot|x-2|$

8

The domain of p(x) is all values of x that are common to the domains of f(x) and g(x), so the domain is $x \ge -2$. Use technology to graph the function; the range is $y \ge 0$.

c) Given $q(x) = \frac{f(x)}{g(x)}$, write an explicit equation for q(x), then determine its domain and range.

 $q(x) = \frac{\sqrt{x+2}}{|x-2|}$ The domain of q(x) is restricted to those values of x for which $|x-2| \neq 0$ and for which $\sqrt{x+2}$ is defined, so the domain is $x \geq -2$, $x \neq 2$. Use technology to graph the function; the range is $y \geq 0$.

12. a) When asked to write $f(x) = x^2$ as the quotient of two functions, a student wrote $f(x) = \frac{x^3}{x}$. Is this correct? Justify your answer.

No, the answer is incorrect because the domain of the new function has the restriction $x \neq 0$, which the original function did not have.

b) If your answer to part a is no, write $f(x) = x^2$ as a quotient of two functions.

Multiply and divide the function by a non-zero expression, such as $(x^2 + 1)$. A possible function is: $f(x) = \frac{x^2(x^2 + 1)}{x^2 + 1}$

13. Consider the functions: $f(x) = (x + 3)^2$ and $g(x) = \frac{x - 2}{x + 3}$ Given $p(x) = f(x) \cdot g(x)$, write an explicit equation for p(x), then determine its domain and range.

$$p(x) = (x + 3)^2 \left(\frac{x-2}{x+3}\right), \text{ or } p(x) = (x + 3)(x - 2), x \neq -3$$

$$p(x) = x^2 + x - 6, x \neq -3$$
The domain is $x \neq -3$. Use technology to graph the function; the range is $y \ge -6.25$.

14. Consider the function g(x) = 4 and any function f(x). Predict how the graph of each function below will be a transformation image of y = f(x). Use graphing technology to check.

a)
$$y = f(x) + g(x)$$
 b) $y = f(x) - g(x)$

The function g(x) is a horizontal line with y-intercept 4.

When <i>g</i> (<i>x</i>) is added to <i>f</i> (<i>x</i>), the	When g(x) is subtracted from
graph of $y = f(x)$ will be	f(x), the graph of $y = f(x)$ will
translated 4 units up.	be translated 4 units down.

c) $y = f(x) \cdot g(x)$ d) $y = \frac{f(x)}{g(x)}$

When f(x) is multiplied by g(x),When f(x) is divided by g(x), thethe graph of y = f(x) will begraph of y = f(x) will bestretched vertically by a factorcompressed vertically by aof 4.factor of $\frac{1}{4}$.

15. When each function h(x) below is evaluated at x = a, its value is 0. What do you know about the values of f(a) and g(a)?

a) $h(x) = f(x) + g(x)$	b) $h(x) = f(x) - g(x)$
Substitute: $x = a, h(a) = 0$	Substitute: $x = a$, $h(a) = 0$
0 = f(a) + g(a)	0 = f(a) - g(a)
f(a) = -g(a)	f(a) = g(a)
c) $h(x) = f(x) \cdot g(x)$	d) $h(x) = \frac{f(x)}{g(x)}$
Substitute: $x = a$, $h(a) = 0$	Substitute: $x = a$, $h(a) = 0$
$0 = f(a) \cdot g(a)$	$0 = \frac{f(a)}{g(a)}$
f(a) = 0, or $g(a) = 0$, or both	$f(a) = 0$ and $g(a) \neq 0$

16. Given $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2 - x}$, determine an explicit equation for each function, then state its domain.

a) h(x) = f(x) + g(x) $h(x) = \sqrt{x} + \sqrt{2-x}$ For $f(x), x \ge 0$ and for g(x), $x \le 2$, so the domain of h(x) is: $0 \le x \le 2$ b) d(x) = f(x) - g(x) $f(x) - \sqrt{2-x}$ For $f(x), x \ge 0$ and for g(x), $x \le 2$, so the domain of d(x) is: $0 \le x \le 2$

c)
$$p(x) = f(x) \cdot g(x)$$
 d) $q(x) = \frac{f(x)}{g(x)}$

 $p(x) = \sqrt{x} \cdot \sqrt{2 - x}$ For $f(x), x \ge 0$ and for $g(x), x \le 2$, so the domain of p(x) is: $0 \le x \le 2$

С

17. Consider the function: $f(x) = \frac{x^2 - 3x + 4}{x - 1}$

a) Determine the domain and the approximate range of f(x).

Since the denominator cannot be 0, the domain is: $x \neq 1$ Use technology to graph the function. It has a minimum point at approximately (2.4, 1.8) and a maximum point at approximately (-0.4, -3.8). So, the range is approximately $y \leq -3.8$ or $y \geq 1.8$. **b**) Determine explicit equations for g(x), h(x), and k(x) so that $f(x) = g(x) + \frac{h(x)}{k(x)}.$

Sample response: Use synthetic division to determine: $(x^2 - 3x + 4) \div (x - 1)$

1	1	-3	4	The function can be written as:
		1	-2	$f(x) = x - 2 + \frac{2}{x - 1}$
	1	-2	2	x = 1
So,	g(x) =	= x -	2; h(x)	= 2; and k(x) = x - 1

18. Is it possible to combine $f(x) = \sqrt{x}$ with a second function g(x) to get a new function whose domain is all real numbers? Justify your answer.

No, when two functions are combined, the domain of the new function is the set of values of x that are common to the two functions that were combined. Since the domain of \sqrt{x} is $x \ge 0$, then the domain of the new function cannot be all real numbers.