Lesson 4.2 Exercises, pages 278-284

A

3. Given $f(x)=x^{3}$ and $g(x)=x^{2}+1$, write an explicit equation for each combination.
a) $h(x)=f(x)+g(x)$
$h(x)=x^{3}+x^{2}+1$
b) $d(x)=f(x)-g(x)$
$d(x)=x^{3}-x^{2}-1$
c) $p(x)=f(x) \cdot g(x)$
d) $q(x)=\frac{f(x)}{g(x)}$
$p(x)=x^{3}\left(x^{2}+1\right)$

$$
q(x)=\frac{x^{3}}{x^{2}+1}
$$

4. For each function $h(x)$ below, write explicit equations for $f(x)$ and $g(x)$ so that:
i) $h(x)$ is the $\operatorname{sum} f(x)+g(x)$
ii) $h(x)$ is the difference $f(x)-g(x)$
a) $h(x)=x^{2}+3 x-4$
b) $h(x)=x^{3}-x^{2}+8$

Sample answers:
i) $h(x)=x^{2}+(3 x-4)$
i) $h(x)=\left(x^{3}-x^{2}\right)+8$ $f(x)=x^{2}$ and $g(x)=3 x-4$
$f(x)=x^{3}-x^{2}$ and $g(x)=8$
ii) $h(x)=x^{2}-(-3 x+4)$
ii) $h(x)=x^{3}-\left(x^{2}-8\right)$
$f(x)=x^{2}$ and
$f(x)=x^{3}$ and $g(x)=x^{2}-8$

$$
g(x)=-3 x+4
$$

B
5. Use $f(x)=2 x-4$ and $g(x)=-x+2$.
a) Write an explicit equation for $h(x)$.
i) $h(x)=f(x)+g(x)$
ii) $h(x)=g(x)+f(x)$
$h(x)=2 x-4+(-x+2)$
$h(x)=-x+2+2 x-4$
$h(x)=x-2$
$h(x)=x-2$
iii) $h(x)=f(x)-g(x)$
$h(x)=2 x-4-(-x+2)$
$h(x)=3 x-6$
iv) $h(x)=g(x)-f(x)$
$h(x)=-x+2-(2 x-4)$ $h(x)=-3 x+6$
v) $h(x)=f(x) \cdot g(x)$
vi) $h(x)=g(x) \cdot f(x)$
$h(x)=(2 x-4)(-x+2)$
$h(x)=(-x+2)(2 x-4)$
$h(x)=-2 x^{2}+8 x-8$
$h(x)=-2 x^{2}+8 x-8$
b) For part a, compare the answers to parts i and ii; parts iii and iv; and parts v and vi. Explain the results.

The answers to parts i and ii are the same because addition is commutative. The answers to parts iii and iv are opposites because subtraction is not commutative. The answers to parts v and vi are the same because multiplication is commutative.
6. Given that $f(x)=x^{2}-4, g(x)=2 x-1$, and $h(x)=3-x^{3}$, write an explicit equation for $k(x)$, then state its domain.
a) $k(x)=f(x)+g(x)+h(x)$
b) $k(x)=f(x)-g(x)+h(x)$
$k(x)=x^{2}-4+2 x-1+$
$k(x)=x^{2}-4-(2 x-1)+$ $3-x^{3}$
$3-x^{3}$
$k(x)=-x^{3}+x^{2}+2 x-2$
This is a cubic function; its
domain is: $x \in \mathbb{R}$
$k(x)=-x^{3}+x^{2}-2 x$
This is a cubic function; its domain is: $x \in \mathbb{R}$
c) $k(x)=f(x)+g(x) \cdot h(x)$
d) $k(x)=g(x) \cdot f(x)-h(x)$
$\begin{array}{ll}k(x)=x^{2}-4+(2 x-1)\left(3-x^{3}\right) & k(x)=(2 x-1)\left(x^{2}-4\right)-\left(3-x^{3}\right) \\ k(x)=x^{2}-4+6 x-2 x^{4}-3+x^{3} & k(x)=2 x^{3}-8 x-x^{2}+4-3+x^{3} \\ k(x)=-2 x^{4}+x^{3}+x^{2}+6 x-7 & k(x)=3 x^{3}-x^{2}-8 x+1\end{array}$
This is a quartic function; its domain This is a cubic function; its domain is: is: $x \in \mathbb{R}$

$$
\boldsymbol{x} \in \mathbb{R}
$$

7. Use the function $k(x)=x^{2}-3 x-28$.
a) Write explicit equations for three functions $f(x), g(x)$, and $h(x)$ so that $k(x)=f(x)+g(x)+h(x)$.

Sample response:
$k(x)=x^{2}-3 x-28$
$k(x)=\left(x^{2}\right)+(-3 x)+(-28)$
$f(x)=x^{2} ; g(x)=-3 x ; h(x)=-28$
b) Write explicit equations for two functions $f(x)$ and $g(x)$ so that
$k(x)=f(x) \cdot g(x)$.
Sample response:
$k(x)=x^{2}-3 x-28$
Factor: $k(x)=(x-7)(x+4)$
$f(x)=x-7 ; g(x)=x+4$
8. For each function $h(x)$ below, write explicit equations for $f(x)$ and $g(x)$ so that:
i) $h(x)$ is the $\operatorname{sum} f(x)+g(x)$
ii) $h(x)$ is the difference $f(x)-g(x)$
iii) $h(x)$ is the product $f(x) \cdot g(x)$
iv) $h(x)$ is the quotient $\frac{f(x)}{g(x)}$
a) $h(x)=x^{2}$
b) $h(x)=\sqrt{x}$

Sample response:

i) Subtract and add the same term.
$h(x)=x^{2}-x+x$
$f(x)=x^{2}-x ; g(x)=x$
ii) Add and subtract the same term.
$h(x)=x^{2}+x-x$ $f(x)=x^{2}+x ; g(x)=x$
iii) Write x^{2} as a product.
$h(x)=(x)(x)$
$f(x)=x ; g(x)=x$
iv) Multiply and divide x^{2} by the same non-zero expression.

$$
\begin{aligned}
& h(x)=\frac{x^{2}\left(x^{2}+1\right)}{x^{2}+1} \\
& f(x)=x^{2}\left(x^{2}+1\right) ; \\
& g(x)=x^{2}+1
\end{aligned}
$$

i) Subtract and add the same term.

$$
\begin{aligned}
& h(x)=\sqrt{x}-x+x \\
& f(x)=\sqrt{x}-x ; g(x)=x
\end{aligned}
$$

ii) Add and subtract the same term.

$$
\begin{aligned}
& h(x)=\sqrt{x}+x-x \\
& f(x)=\sqrt{x}+x ; g(x)=x
\end{aligned}
$$

iii) Multiply \sqrt{x} by a term that is equal to 1 .

$$
\begin{aligned}
& h(x)=\sqrt{x}\left(\frac{2}{2}\right) \\
& f(x)=2 \sqrt{x} ; g(x)=\frac{1}{2}
\end{aligned}
$$

iv) Multiply and divide \sqrt{x} by the same non-zero expression.

$$
\begin{aligned}
& h(x)=\sqrt{x}\left(\frac{2+x^{2}}{2+x^{2}}\right) \\
& f(x)=\left(2+x^{2}\right) \sqrt{x} \\
& g(x)=2+x^{2}
\end{aligned}
$$

9. Use $f(x)=|x-4|$ and $g(x)=x^{2}$.
a) State the domain and range of $f(x)$ and of $g(x)$.
$f(x)$ is an absolute value function; the domain is $x \in \mathbb{R}$ and the range is $y \geq 0 . g(x)$ is a quadratic function whose graph has vertex $(0,0)$ and opens up; the domain is $x \in \mathbb{R}$, and the range is $y \geq 0$.
b) Given $h(x)=f(x)+g(x)$, write an explicit equation for $h(x)$, then determine its domain and range.
$h(x)=|x-4|+x^{2}$
Since the domains of $f(x)$ and $g(x)$ are equal, then the domain of $h(x)$ is $x \in \mathbb{R}$. Use technology to graph the function; the minimum value is 3.75 at $x=0.5$, so the range is $y \geq 3.75$.
c) Given $d(x)=f(x)-g(x)$, write an explicit equation for $d(x)$, then determine its domain and range.
$d(x)=|x-4|-x^{2}$
Since the domains of $f(x)$ and $g(x)$ are equal, then the domain of $d(x)$ is $x \in \mathbb{R}$. Use technology to graph the function; the maximum value is 4.25 at $x=-0.5$, so the range is $y \leq 4.25$.
10. Use $f(x)=x^{3}-x$ and $g(x)=\frac{1}{x+3}$.
a) State the domain and range of $f(x)$ and of $g(x)$.
$f(x)$ is a cubic function; the domain is $x \in \mathbb{R}$ and the range is $y \in \mathbb{R}$. $g(x)$ is a reciprocal function; the domain is $x \neq-3$, and the range is $y \neq 0$.
b) Given $h(x)=f(x)+g(x)$, write an explicit equation for $h(x)$, then determine its domain and range.
$h(x)=x^{3}-x+\frac{1}{x+3}$
The domain of $h(x)$ is the set of values of x that are common to the domains of $f(x)$ and $g(x)$, so the domain is $x \neq-3$. Use technology to graph the function; the approximate range is $y \leq-34.5$ or $y \geq-14.2$.
c) Given $p(x)=f(x) \cdot g(x)$, write an explicit equation for $p(x)$, then determine its domain and range.
$p(x)=\frac{x^{3}-x}{x+3}$
The domain of $p(x)$ is the set of values of x that are common to the domains of $f(x)$ and $g(x)$, so the domain is $x \neq-3$. Use technology to graph the function; the range is $y \in \mathbb{R}$.
11. Use $f(x)=\sqrt{x+2}$ and $g(x)=|x-2|$.
a) State the domain and range of $f(x)$ and of $g(x)$.
$f(x)$ is a square root function; the domain is $x \geq-2$ and the range is $y \geq 0 . g(x)$ is an absolute value function; the domain is $x \in \mathbb{R}$, and the range is $y \geq 0$.
b) Given $p(x)=f(x) \cdot g(x)$, write an explicit equation for $p(x)$, then determine its domain and range.
$p(x)=\sqrt{x+2} \cdot|x-2|$
The domain of $p(x)$ is all values of x that are common to the domains of $f(x)$ and $g(x)$, so the domain is $x \geq-2$. Use technology to graph the function; the range is $y \geq 0$.
c) Given $q(x)=\frac{f(x)}{g(x)}$, write an explicit equation for $q(x)$, then determine its domain and range.
$q(x)=\frac{\sqrt{x+2}}{|x-2|}$
The domain of $q(x)$ is restricted to those values of x for which $|x-2| \neq 0$ and for which $\sqrt{x+2}$ is defined, so the domain is $x \geq-2$, $x \neq 2$. Use technology to graph the function; the range is $y \geq 0$.
12. a) When asked to write $f(x)=x^{2}$ as the quotient of two functions, a student wrote $f(x)=\frac{x^{3}}{x}$. Is this correct? Justify your answer.
No, the answer is incorrect because the domain of the new function has the restriction $x \neq 0$, which the original function did not have.
b) If your answer to part a is no, write $f(x)=x^{2}$ as a quotient of two functions.

Multiply and divide the function by a non-zero expression, such as $\left(x^{2}+1\right)$.
A possible function is: $f(x)=\frac{x^{2}\left(x^{2}+1\right)}{x^{2}+1}$
13. Consider the functions: $f(x)=(x+3)^{2}$ and $g(x)=\frac{x-2}{x+3}$

Given $p(x)=f(x) \cdot g(x)$, write an explicit equation for $p(x)$, then determine its domain and range.
$p(x)=(x+3)^{2}\left(\frac{x-2}{x+3}\right)$, or $p(x)=(x+3)(x-2), x \neq-3$
$p(x)=x^{2}+x-6, x \neq-3$
The domain is $x \neq-3$. Use technology to graph the function; the range is $y \geq-6.25$.
14. Consider the function $g(x)=4$ and any function $f(x)$. Predict how the graph of each function below will be a transformation image of $y=f(x)$. Use graphing technology to check.
a) $y=f(x)+g(x)$
b) $y=f(x)-g(x)$

The function $g(x)$ is a horizontal line with y-intercept 4 .
When $g(x)$ is added to $f(x)$, the When $g(x)$ is subtracted from graph of $y=f(x)$ will be $\quad f(x)$, the graph of $y=f(x)$ will translated 4 units up. be translated 4 units down.
c) $y=f(x) \cdot g(x)$
d) $y=\frac{f(x)}{g(x)}$

When $f(x)$ is multiplied by $g(x)$, the graph of $y=f(x)$ will be stretched vertically by a factor of 4 .

When $f(x)$ is divided by $g(x)$, the graph of $y=f(x)$ will be compressed vertically by a factor of $\frac{1}{4}$.
15. When each function $h(x)$ below is evaluated at $x=a$, its value is 0 . What do you know about the values of $f(a)$ and $g(a)$?
a) $h(x)=f(x)+g(x)$
b) $h(x)=f(x)-g(x)$
Substitute: $x=a, h(a)=0$
Substitute: $x=a, h(a)=0$
$0=f(a)+g(a)$
$f(a)=-g(a)$

$$
0=f(a)-g(a)
$$

$f(a)=g(a)$
c) $h(x)=f(x) \cdot g(x)$
d) $h(x)=\frac{f(x)}{g(x)}$
Substitute: $x=a, h(a)=0$
Substitute: $x=a, h(a)=0$

$$
\begin{aligned}
0 & =f(a) \cdot g(a) \\
f(a) & =0, \text { or } g(a)=0, \text { or both }
\end{aligned}
$$

$$
0=\frac{f(a)}{g(a)}
$$

$$
f(a)=0 \text { and } g(a) \neq 0
$$

16. Given $f(x)=\sqrt{x}$ and $g(x)=\sqrt{2-x}$, determine an explicit equation for each function, then state its domain.
a) $h(x)=f(x)+g(x)$
b) $d(x)=f(x)-g(x)$
$h(x)=\sqrt{x}+\sqrt{2-x}$
$d(x)=\sqrt{x}-\sqrt{2-x}$
For $f(x), x \geq 0$ and for $g(x)$,
For $f(x), x \geq 0$ and for $g(x)$,
$x \leq 2$, so the domain of $h(x)$ is:
$x \leq 2$, so the domain of $d(x)$ is:
$0 \leq x \leq 2$
$0 \leq x \leq 2$
c) $p(x)=f(x) \cdot g(x)$
d) $q(x)=\frac{f(x)}{g(x)}$
$p(x)=\sqrt{x} \cdot \sqrt{2-x}$
For $f(x), x \geq 0$ and for $g(x)$,
$x \leq 2$, so the domain of $p(x)$ is:
$0 \leq x \leq 2$
$q(x)=\frac{\sqrt{x}}{\sqrt{2-x}}$
For $f(x), x \geq 0$ and for $g(x)$, $x \leq 2$, but since $g(x)$ is in the denominator, $x \neq 2$
The domain of $q(x)$ is: $0 \leq x<2$

C

17. Consider the function: $f(x)=\frac{x^{2}-3 x+4}{x-1}$
a) Determine the domain and the approximate range of $f(x)$.

Since the denominator cannot be 0 , the domain is: $x \neq 1$
Use technology to graph the function.
It has a minimum point at approximately ($2.4,1.8$) and a maximum point at approximately $(-0.4,-3.8)$.
So, the range is approximately $y \leq-3.8$ or $y \geq 1.8$.
b) Determine explicit equations for $g(x), h(x)$, and $k(x)$ so that

$$
f(x)=g(x)+\frac{h(x)}{k(x)}
$$

Sample response: Use synthetic division to determine: $\left(x^{2}-3 x+4\right) \div(x-1)$

1 \begin{tabular}{c}

$|$| 1 | -3 | 4 |
| ---: | ---: | ---: |
| | 1 | -2 |
| 1 | -2 | 2 |

\end{tabular}

The function can be written as:

$$
f(x)=x-2+\frac{2}{x-1}
$$

$$
\text { So, } g(x)=x-2 ; h(x)=2 ; \text { and } k(x)=x-1
$$

18. Is it possible to combine $f(x)=\sqrt{x}$ with a second function $g(x)$ to get a new function whose domain is all real numbers? Justify your answer.
No, when two functions are combined, the domain of the new function is the set of values of x that are common to the two functions that were combined. Since the domain of \sqrt{x} is $x \geq 0$, then the domain of the new function cannot be all real numbers.
