Lesson 4.4 Exercises, pages 314–321

Α

3. For each function below, determine possible functions *f* and *g* so that y = f(g(x)).

```
a) y = (x + 4)^2

Sample solution:

Let f(g(x)) = (x + 4)^2

Replace x + 4 with x.

Then, g(x) = x + 4 and f(x) = x^2

b) y = \sqrt{x + 5}

Sample solution:

Let f(g(x)) = \sqrt{x + 5}

Replace x + 5 with x.

Then, g(x) = x + 5 and f(x) = \sqrt{x}
```

c) $y = \frac{1}{x - 2}$ Sample solution: Let $f(g(x)) = \frac{1}{x - 2}$ Replace x - 2 with x. Then, g(x) = x - 2 and $f(x) = \frac{1}{x}$ d) $y = (6 - x)^3$ Sample solution: Let $f(g(x)) = (6 - x)^3$ Replace 6 - x with x. Then, g(x) = 6 - x and $f(x) = x^3$ **4.** Given f(x) = x + 3 and $g(x) = x^2 + 1$, sketch the graph of each composite function below then state its domain and range.

a)
$$y = f(f(x))$$

b) $y = f(g(x))$

Make a table of values for the functions.

x	<i>f</i> (<i>x</i>)	f(f(x))	g(x)	f(g(x))	g(f(x))	g(g(x))
-4	-1	2	17	20	2	290
-3	0	3	10	13	1	101
-2	1	4	5	8	2	26
-1	2	5	2	5	5	5
0	3	6	1	4	10	2
1	4	7	2	5	17	5
2	5	8	5	8	26	26

- a) Graph the points with coordinates (x, f(f(x))) that fit on the grid. Draw a line through the points for the graph of y = f(f(x)). From the graph, the domain is $x \in \mathbb{R}$ and the range is $y \in \mathbb{R}$.
- b) Graph the points with coordinates (x, f(g(x))) that fit on the grid. Draw a smooth curve through the points for the graph of y = f(g(x)). From the graph, the domain is $x \in \mathbb{R}$ and the range is $y \ge 4$.

- c) Graph the points with coordinates (x, g(f(x))) that fit on the grid. Draw a smooth curve through the points for the graph of y = g(f(x)). From the graph, the domain is $x \in \mathbb{R}$. From the table, the range is $y \ge 1$.
- d) Graph the points with coordinates (x, g(g(x))) that fit on the grid. Draw a smooth curve through the points for the graph of y = g(g(x)). From the graph, the domain is $x \in \mathbb{R}$. From the table, the range is $y \ge 2$.

- **5.** Consider the function h(x) = (x 1)(x + 5).
 - a) Why is it incorrect to write h(x) = f(g(x)), where f(x) = x 1and g(x) = x + 5?

It is incorrect because, as written, h(x) is the product of f(x) and g(x), not their composition.

b) For what functions f(x) and g(x) is h(x) a composite function?

Expand: h(x) = (x - 1)(x + 5) $h(x) = x^2 + 4x - 5$ Complete the square: $h(x) = (x^2 + 4x + 4) - 9$ $h(x) = (x + 2)^2 - 9$ Possible functions are: $f(x) = x^2 - 9$ and g(x) = x + 2 for h(x) = f(g(x))

- **6.** For each pair of functions below:
 - i) Determine an explicit equation for the indicated composite function.
 - **ii**) State the domain of the composite function, and explain any restrictions on the variable.

a)
$$f(x) = \sqrt{x+1}$$
 and $g(x) = x^2 - x - 6$; $g(f(x))$

- i) $\ln g(x) = x^2 x 6$, replace x with $\sqrt{x + 1}$. $g(f(x)) = (\sqrt{x + 1})^2 - \sqrt{x + 1} - 6$ $g(f(x)) = x + 1 - \sqrt{x + 1} - 6$ $g(f(x)) = x - 5 - \sqrt{x + 1}$
- ii) The domain of $f(x) = \sqrt{x + 1}$ is $x \ge -1$. The domain of $g(x) = x^2 - x - 6$ is $x \in \mathbb{R}$. So, the domain of g(f(x)) is $x \ge -1$. The variable x is restricted because the square root of a real number is only defined for numbers that are greater than or equal to 0.

b)
$$f(x) = \sqrt{x - 1}$$
 and $g(x) = \frac{1}{x + 3}$; $g(f(x))$
i) $\ln g(x) = \frac{1}{x + 3}$, replace x with $\sqrt{x - 1}$.
 $g(f(x)) = \frac{1}{\sqrt{x - 1} + 3}$
ii) The domain of $f(x) = \sqrt{x - 1}$ is $x \ge 1$.

The domain of $g(x) = \frac{1}{x+3}$ is $x \neq -3$.

-3 is not in the range of f(x).

So, the domain of g(f(x)) is $x \ge 1$.

The variable *x* is restricted because the square root of a real number is only defined for numbers that are greater than or equal to 0.

c) $f(x) = \sqrt{x+3}$ and g(x) = 2x - 1; f(g(x))

- i) $\ln f(x) = \sqrt{x+3}$, replace x with 2x 1. $f(g(x)) = \sqrt{2x-1+3}$ $f(g(x)) = \sqrt{2x+2}$
- ii) The domain of g(x) = 2x 1 is $x \in \mathbb{R}$. The domain of $f(x) = \sqrt{x+3}$ is $x \ge -3$. So, $g(x) \ge -3$
 - $2x-1 \geq -3$
 - $2x \ge -2$ $x \ge -1$

So, the domain of f(g(x)) is $x \ge -1$. The variable x is restricted because the square root of a real number is only defined for numbers that are greater than or equal to 0.

d) $f(x) = \frac{1}{x-1}$ and $g(x) = x^2 + 2x$; f(f(x))i) $\ln f(x) = \frac{1}{x-1}$, replace x with $\frac{1}{x-1}$. $f(f(x)) = \frac{1}{\frac{1}{x-1}-1}$, which simplifies to $f(f(x)) = \frac{x-1}{2-x}$, $x \neq 1$ ii) The domain of $f(x) = \frac{1}{x-1}$ is $x \neq 1$. Also, $2 - x \neq 0$ $x \neq 2$ So, the domain of f(f(x)) is $x \neq 1$ and $x \neq 2$. The variable x is restricted because the denominator of a fraction can never be 0.

7. For each function below

i) Determine possible functions *f* and *g* so that y = f(g(x)). ii) Determine possible functions *f*, *g*, and *h* so that y = f(g(h(x))).

a)
$$y = x^2 - 6x + 5$$

Sample solution:
 $y = x^2 - 6x + 5$
 $y = (x^2 - 6x + 9) - 4$
 $y = (x^2 - 6x + 9) - 4$
 $y = (x^2 - 6x + 9) - 4$
 $y = (x - 3)^2 - 4$
i) Replace $x - 3$ with x .
Then, $g(x) = x - 3$ and
 $f(x) = x^2 - 4$
ii) Replace $x - 3$ with x .
Then, $h(x) = x - 3$, $g(x) = x^2$,
and $f(x) = x - 4$
b) $y = -3x^2 - 30x - 40$
 $y = -3(x^2 + 10x + 25) + 75 - 40$
 $y = -3(x + 5)^2 + 35$
Let $f(g(x)) = -3(x + 5)^2 + 35$
i) Replace $x + 5$ with x .
Then, $g(x) = x + 5$ and
 $f(x) = -3x^2 + 35$
ii) Replace $x + 5$ with x .
Then, $h(x) = x - 3$, $g(x) = x^2$,
and $f(x) = -3x + 35$

c)
$$y = \sqrt{(x - 2)^2 + 3}$$

Sample solution:
Let $f(g(x)) = \sqrt{(x - 2)^2 + 3}$
i) Replace $x - 2$ with x .
Then, $g(x) = x - 2$ and
 $f(x) = \sqrt{x^2 + 3}$
ii) Replace $x - 2$ with x .
Then, $h(x) = x - 2$,
 $g(x) = x^2$, and
 $f(x) = \sqrt{x + 3}$
d) $y = \sqrt{x^2 + 4x + 3}$
Sample solution:
 $y = \sqrt{x^2 + 4x + 3}$
 $y = \sqrt{(x^2 + 4x + 4) - 1}$
 $y = \sqrt{(x^2 + 4x + 4) - 1}$
 $y = \sqrt{(x + 2)^2 - 1}$
Let $f(g(x)) = \sqrt{(x + 2)^2 - 1}$
i) Replace $x + 2$ with x .
Then, $h(x) = x - 2$,
 $g(x) = x^2$, and
 $f(x) = \sqrt{x + 3}$
ii) Replace $x + 2$ with x .
Then, $g(x) = x + 2$ and
 $f(x) = \sqrt{x^2 - 1}$
ii) Replace $x + 2$ with x .
Then, $h(x) = x + 2$, $g(x) = x^2$,
and $f(x) = \sqrt{x - 1}$

8. Create composite functions using either or both functions in each pair of functions below. In each case, how many different composite functions could you create? Justify your answer.

a)
$$f(x) = |x|$$
 and $g(x) = \frac{1}{x}$
 $f(f(x)) = ||x||$, which simplifies to $f(f(x)) = |x|$
 $f(g(x)) = \left|\frac{1}{x}\right|$, which simplifies to $f(g(x)) = \frac{1}{|x|}$
 $g(f(x)) = \frac{1}{|x|}$
 $g(g(x)) = \frac{1}{\frac{1}{x}}$, which simplifies to $g(g(x)) = x, x \neq 0$
There are only 3 different composite functions, because $f(g(x)) = g(f(x))$.

b)
$$f(x) = \sqrt{x}$$
 and $g(x) = |x|$

 $f(f(x)) = \sqrt{\sqrt{x}}$ $f(g(x)) = \sqrt{|x|}$ $g(f(x)) = |\sqrt{x}|, \text{ which simplifies to } g(f(x)) = \sqrt{x}$ g(g(x)) = ||x||, which simplifies to g(g(x)) = |x|There are 4 different composite functions.

c)
$$f(x) = x^3$$
 and $g(x) = \frac{1}{x}$
 $f(f(x)) = (x^3)^3$, which simplifies to $f(f(x)) = x^9$
 $f(g(x)) = \left(\frac{1}{x}\right)^3$, which simplifies to $f(g(x)) = \frac{1}{x^3}$
 $g(f(x)) = \frac{1}{x^3}$
 $g(g(x)) = \frac{1}{1^3}$, which simplifies to $g(g(x)) = x, x \neq 0$
There are only 3 different composite functions, because $f(g(x)) = g(f(x))$.

9. Given the function $y = \frac{x}{\sqrt{x-3}}$, determine possible functions: a) f and g so that $y = \frac{f(x)}{g(x)}$ Sample solution: f(x) = x and $g(x) = \sqrt{x-3}$

b) *f*, *g*, and *h* so that $y = \frac{f(x)}{g(h(x))}$ Sample solution: Replace x - 3 with *x*. Let h(x) = x - 3, then $g(x) = \sqrt{x}$, and f(x) = x.

c) f and g so that y = f(g(x))

Sample solution: When g(x) replaces x in f(x), the numerator must be x and the denominator must be $\sqrt{x-3}$. So, g(x) = x - 3 and $f(x) = \frac{x+3}{\sqrt{x}}$

- **10.** Given the functions $f(x) = \sqrt{x}$, $g(x) = x^2 x + 6$, and $k(x) = \frac{2}{x}$, write an explicit equation for each combination.
 - a) h(x) = f(g(x)) + k(x)For f(g(x)), replace x in $f(x) = \sqrt{x}$ with $x^2 - x + 6$. Then, $f(g(x)) = \sqrt{x^2 - x + 6}$ So, $h(x) = \sqrt{x^2 - x + 6} + \frac{2}{x'}$, $x \neq 0$ b) h(x) = g(f(x)) - f(g(x))For g(f(x)), replace x in $g(x) = x^2 - x + 6$ with \sqrt{x} . Then, $g(f(x)) = (\sqrt{x})^2 - \sqrt{x} + 6$ Or, $g(f(x)) = x - \sqrt{x} + 6$, $x \ge 0$ So, $h(x) = x - \sqrt{x} + 6$ - $\sqrt{x^2 - x + 6}$, $x \ge 0$

c)
$$h(x) = k(g(x)) + k(f(x))$$

For $k(g(x))$, replace x in
 $k(x) = \frac{2}{x}$ with $x^2 - x + 6$.
Then, $k(g(x)) = \frac{2}{x^2 - x + 6}$
For $k(f(x))$, replace x in
 $k(x) = \frac{2}{x}$ with $f(x) = \sqrt{x}$
Then, $k(f(x)) = \frac{2}{\sqrt{x}}$, $x > 0$
So, $h(x) = \frac{2}{x^2 - x + 6} + \frac{2}{\sqrt{x}}$, $x > 0$

- **11.** Given the function $y = (x^2 9)\sqrt{x + 2}$, determine possible functions in each case:
 - **a**) functions *f* and *g* so that $y = f(x) \cdot g(x)$

Sample solution: $f(x) = x^2 - 9$ and $g(x) = \sqrt{x+2}$

b) functions *f*, *g*, and *h* so that $y = f(x) \cdot g(h(x))$

Sample solution: $f(x) = x^2 - 9$ For g(h(x)), let h(x) = x + 2, then $g(x) = \sqrt{x}$

c) functions *f*, *g*, *h*, and *k* so that $y = f(x) \cdot k(x) \cdot g(h(x))$

Sample solution: From part b, for g(h(x)), let h(x) = x + 2, then $g(x) = \sqrt{x}$ Factor: $x^2 - 9 = (x + 3)(x - 3)$ Then, f(x) = x + 3 and k(x) = x - 3

 Is there a function f(x) such that each relationship is true? Justify your answer.

a) f(f(x)) = f(x)Yes, when f(x) = x, then f(f(x)) = xb) f(f(x)) = f(x) + f(x)Yes, when f(x) = 2x, then f(f(x)) = 4xand f(x) + f(x) = 2x + 2x, or 4x

С

- **13.** Given $f(x) = \frac{1}{x 2}$, g(x) is a quadratic function, and h(x) = f(g(x)), determine an explicit equation for g(x) for each situation below. Explain your strategies.
 - **a**) The domain of h(x) is $x \in \mathbb{R}$.

Sample solution: The denominator of h(x) must never be 0. When $g(x) = x^2 + 3$, then $f(g(x)) = \frac{1}{x^2 + 3 - 2}$, which simplifies to $f(g(x)) = \frac{1}{x^2 + 1}$.

b) The domain of h(x) is $x \neq a$ and $x \neq b$, where *a* and *b* are real numbers.

Sample solution: There must be exactly two values of x that make the denominator of h(x) equal to 0. When $g(x) = x^2 + 1$, then $f(g(x)) = \frac{1}{x^2 + 1 - 2}$, which simplifies to $f(g(x)) = \frac{1}{x^2 - 1}$. So, a = 1 and b = -1 c) The domain of h(x) is $x \neq c$, where *c* is a real number.

Sample solution: There must be exactly one value of x that makes the denominator of h(x) equal to 0. When $g(x) = x^2 + 2$, then $f(g(x)) = \frac{1}{x^2 + 2 - 2}$, which simplifies to $f(g(x)) = \frac{1}{x^2}$. So, c = 0

14. Use $f(x) = \frac{1-x}{1+x}$.

a) Determine an explicit equation for f(f(x)), then state the domain of the function.

$$\ln f(x) = \frac{1-x}{1+x'} \text{ replace } x \text{ with } \frac{1-x}{1+x}$$

$$f(f(x)) = \frac{1-\frac{1-x}{1+x}}{1+\frac{1-x}{1+x}}$$

$$= \frac{\frac{1+x-(1-x)}{1+x}}{\frac{1+x+(1-x)}{1+x}}$$

$$= x, x \neq -1$$
The domain of the function is: $x \neq -1$

b) What is the inverse of f(x)? Explain.

Since $f(f(x)) = x, x \neq -1$, then f(x) is its own inverse. So, the inverse of f(x) is $f^{-1}(x) = \frac{1-x}{1+x}$.