## Lesson 4.4 Exercises, pages 314-321

A
3. For each function below, determine possible functions $f$ and $g$ so that $y=f(g(x))$.
a) $y=(x+4)^{2}$
Sample solution:
Let $f(g(x))=(x+4)^{2}$
Replace $x+4$ with $x$.
Then, $g(x)=x+4$ and $f(x)=x^{2}$
b) $y=\sqrt{x+5}$
Sample solution:
Let $f(g(x))=\sqrt{x+5}$
Replace $x+5$ with $x$.
Then, $g(x)=x+5$ and $f(x)=\sqrt{x}$
c) $y=\frac{1}{x-2}$
d) $y=(6-x)^{3}$
Sample solution:
Let $f(g(x))=\frac{1}{x-2}$
Replace $x-2$ with $x$.
Then, $g(x)=x-2$ and $f(x)=\frac{1}{x}$
Sample solution:
Let $f(g(x))=(6-x)^{3}$
Replace $6-x$ with $x$.
Then, $g(x)=6-x$ and $f(x)=x^{3}$

B
4. Given $f(x)=x+3$ and $g(x)=x^{2}+1$, sketch the graph of each composite function below then state its domain and range.
a) $y=f(f(x))$
b) $y=f(g(x))$


Make a table of values for the functions.

| $x$ | $f(x)$ | $f(f(x))$ | $g(x)$ | $f(g(x))$ | $g(f(x))$ | $g(g(x))$ |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| -4 | -1 | 2 | 17 | 20 | 2 | 290 |
| -3 | 0 | 3 | 10 | 13 | 1 | 101 |
| -2 | 1 | 4 | 5 | 8 | 2 | 26 |
| -1 | 2 | 5 | 2 | 5 | 5 | 5 |
| 0 | 3 | 6 | 1 | 4 | 10 | 2 |
| 1 | 4 | 7 | 2 | 5 | 17 | 5 |
| 2 | 5 | 8 | 5 | 8 | 26 | 26 |

a) Graph the points with coordinates $(x, f(f(x)))$ that fit on the grid.

Draw a line through the points for the graph of $y=f(f(x))$.
From the graph, the domain is $x \in \mathbb{R}$ and the range is $y \in \mathbb{R}$.
b) Graph the points with coordinates $(x, f(g(x)))$ that fit on the grid. Draw a smooth curve through the points for the graph of $y=f(g(x))$.
From the graph, the domain is $x \in \mathbb{R}$ and the range is $y \geq 4$.
c) $y=g(f(x))$

d) $y=g(g(x))$

c) Graph the points with coordinates $(x, g(f(x)))$ that fit on the grid.

Draw a smooth curve through the points for the graph of $y=g(f(x))$.
From the graph, the domain is $x \in \mathbb{R}$. From the table, the range is $y \geq 1$.
d) Graph the points with coordinates $(x, g(g(x)))$ that fit on the grid. Draw a smooth curve through the points for the graph of $y=g(g(x))$.
From the graph, the domain is $x \in \mathbb{R}$. From the table, the range is $y \geq 2$.
5. Consider the function $h(x)=(x-1)(x+5)$.
a) Why is it incorrect to write $h(x)=f(g(x))$, where $f(x)=x-1$ and $g(x)=x+5$ ?

It is incorrect because, as written, $h(x)$ is the product of $f(x)$ and $g(x)$, not their composition.
b) For what functions $f(x)$ and $g(x)$ is $h(x)$ a composite function?

Expand: $h(x)=(x-1)(x+5)$

$$
h(x)=x^{2}+4 x-5
$$

Complete the square: $h(x)=\left(x^{2}+4 x+4\right)-9$

$$
h(x)=(x+2)^{2}-9
$$

Possible functions are: $f(x)=x^{2}-9$ and $g(x)=x+2$ for $h(x)=f(g(x))$
6. For each pair of functions below:
i) Determine an explicit equation for the indicated composite function.
ii) State the domain of the composite function, and explain any restrictions on the variable.
a) $f(x)=\sqrt{x+1}$ and $g(x)=x^{2}-x-6 ; g(f(x))$
i) $\operatorname{In} g(x)=x^{2}-x-6$, replace $x$ with $\sqrt{x+1}$. $g(f(x))=(\sqrt{x+1})^{2}-\sqrt{x+1}-6$ $g(f(x))=x+1-\sqrt{x+1}-6$ $g(f(x))=x-5-\sqrt{x+1}$
ii) The domain of $f(x)=\sqrt{x+1}$ is $x \geq-1$.

The domain of $g(x)=x^{2}-x-6$ is $x \in \mathbb{R}$.
So, the domain of $g(f(x))$ is $x \geq-1$.
The variable $x$ is restricted because the square root of a real number is only defined for numbers that are greater than or equal to 0 .
b) $f(x)=\sqrt{x-1}$ and $g(x)=\frac{1}{x+3} ; g(f(x))$
i) $\ln g(x)=\frac{1}{x+3}$, replace $x$ with $\sqrt{x-1}$.

$$
g(f(x))=\frac{1}{\sqrt{x-1}+3}
$$

ii) The domain of $f(x)=\sqrt{x-1}$ is $x \geq 1$.

The domain of $g(x)=\frac{1}{x+3}$ is $x \neq-3$.
-3 is not in the range of $f(x)$.
So, the domain of $g(f(x))$ is $x \geq 1$.
The variable $x$ is restricted because the square root of a real number is only defined for numbers that are greater than or equal to 0 .
c) $f(x)=\sqrt{x+3}$ and $g(x)=2 x-1 ; f(g(x))$
i) $\operatorname{In} f(x)=\sqrt{x+3}$, replace $x$ with $2 x-1$.
$f(g(x))=\sqrt{2 x-1+3}$
$f(g(x))=\sqrt{2 x+2}$
ii) The domain of $g(x)=2 x-1$ is $x \in \mathbb{R}$.

The domain of $f(x)=\sqrt{x+3}$ is $x \geq-3$.

$$
\begin{aligned}
\text { So, } g(x) & \geq-3 \\
2 x-1 & \geq-3 \\
2 x & \geq-2 \\
x & \geq-1
\end{aligned}
$$

So, the domain of $f(g(x))$ is $x \geq-1$.
The variable $x$ is restricted because the square root of a real number is only defined for numbers that are greater than or equal to 0 .
d) $f(x)=\frac{1}{x-1}$ and $g(x)=x^{2}+2 x ; f(f(x))$
i) $\operatorname{In} f(x)=\frac{1}{x-1}$, replace $x$ with $\frac{1}{x-1}$.

$$
f(f(x))=\frac{1}{\frac{1}{x-1}-1}, \text { which simplifies to } f(f(x))=\frac{x-1}{2-x^{\prime}} x \neq 1
$$

ii) The domain of $f(x)=\frac{1}{x-1}$ is $x \neq 1$.

Also, $2-x \neq 0$

$$
x \neq 2
$$

So, the domain of $f(f(x))$ is $x \neq 1$ and $x \neq 2$.
The variable $x$ is restricted because the denominator of a fraction can never be 0 .
7. For each function below
i) Determine possible functions $f$ and $g$ so that $y=f(g(x))$.
ii) Determine possible functions $f, g$, and $h$ so that $y=f(g(h(x)))$.
a) $y=x^{2}-6 x+5$
b) $y=-3 x^{2}-30 x-40$

Sample solution:
$y=x^{2}-6 x+5$
Sample solution:
$y=\left(x^{2}-6 x+9\right)-4$
$y=-3 x^{2}-30 x-40$
$y=(x-3)^{2}-4$
$y=-3\left(x^{2}+10 x+25\right)+75-40$
Let $f(g(x))=(x-3)^{2}-4$
$y=-3(x+5)^{2}+35$
i) Replace $x-3$ with $x$.

Then, $g(x)=x-3$ and
$f(x)=x^{2}-4$
Let $f(g(x))=-3(x+5)^{2}+35$
i) Replace $x+5$ with $x$. Then, $g(x)=x+5$ and $f(x)=-3 x^{2}+35$
ii) Replace $x-3$ with $x$.

Then, $h(x)=x-3, g(x)=x^{2}$, and $f(x)=x-4$
ii) Replace $x+5$ with $x$. Then, $h(x)=x+5, g(x)=x^{2}$, and $f(x)=-3 x+35$
c) $y=\sqrt{(x-2)^{2}+3}$
d) $y=\sqrt{x^{2}+4 x+3}$

Sample solution:
Let $f(g(x))=\sqrt{(x-2)^{2}+3}$
i) Replace $x-2$ with $x$. Then, $g(x)=x-2$ and $f(x)=\sqrt{x^{2}+3}$
ii) Replace $x-2$ with $x$.

Then, $h(x)=x-2$, $g(x)=x^{2}$, and $f(x)=\sqrt{x+3}$

Sample solution:
$y=\sqrt{x^{2}+4 x+3}$
$y=\sqrt{\left(x^{2}+4 x+4\right)-1}$
$y=\sqrt{(x+2)^{2}-1}$
Let $f(g(x))=\sqrt{(x+2)^{2}-1}$
i) Replace $x+2$ with $x$. Then, $g(x)=x+2$ and $f(x)=\sqrt{x^{2}-1}$
ii) Replace $x+2$ with $x$. Then, $h(x)=x+2, g(x)=x^{2}$, and $f(x)=\sqrt{x-1}$
8. Create composite functions using either or both functions in each pair of functions below. In each case, how many different composite functions could you create? Justify your answer.
a) $f(x)=|x|$ and $g(x)=\frac{1}{x}$
$f(f(x))=\|x\|$, which simplifies to $f(f(x))=|x|$
$f(g(x))=\left|\frac{1}{x}\right|$, which simplifies to $f(g(x))=\frac{1}{|x|}$
$g(f(x))=\frac{1}{|x|}$
$g(g(x))=\frac{1}{\frac{1}{x}}$, which simplifies to $g(g(x))=x, x \neq 0$
There are only 3 different composite functions, because $f(g(x))=g(f(x))$.
b) $f(x)=\sqrt{x}$ and $g(x)=|x|$
$f(f(x))=\sqrt{\sqrt{x}}$
$f(g(x))=\sqrt{|x|}$
$g(f(x))=|\sqrt{x}|$, which simplifies to $g(f(x))=\sqrt{x}$
$g(g(x))=\|x\|$, which simplifies to $g(g(x))=|x|$
There are 4 different composite functions.
c) $f(x)=x^{3}$ and $g(x)=\frac{1}{x}$
$f(f(x))=\left(x^{3}\right)^{3}$, which simplifies to $f(f(x))=x^{9}$
$f(g(x))=\left(\frac{1}{x}\right)^{3}$, which simplifies to $f(g(x))=\frac{1}{x^{3}}$
$g(f(x))=\frac{1}{x^{3}}$
$g(g(x))=\frac{1}{\frac{1}{x}}$, which simplifies to $g(g(x))=x, x \neq 0$
There are only 3 different composite functions, because $f(g(x))=g(f(x))$.
9. Given the function $y=\frac{x}{\sqrt{x-3}}$, determine possible functions:
a) $f$ and $g$ so that $y=\frac{f(x)}{g(x)}$

Sample solution:
$f(x)=x$ and $g(x)=\sqrt{x-3}$
b) $f, g$, and $h$ so that $y=\frac{f(x)}{g(h(x))}$

Sample solution:
Replace $x-3$ with $x$.
Let $h(x)=x-3$, then $g(x)=\sqrt{x}$, and $f(x)=x$.
c) $f$ and $g$ so that $y=f(g(x))$

Sample solution:
When $g(x)$ replaces $x$ in $f(x)$, the numerator must be $x$ and the denominator must be $\sqrt{x-3}$. So, $g(x)=x-3$ and $f(x)=\frac{x+3}{\sqrt{x}}$
10. Given the functions $f(x)=\sqrt{x}, g(x)=x^{2}-x+6$, and $k(x)=\frac{2}{x}$, write an explicit equation for each combination.
a) $h(x)=f(g(x))+k(x)$
b) $h(x)=g(f(x))-f(g(x))$
For $f(g(x))$, replace $x$ in
$f(x)=\sqrt{x}$ with $x^{2}-x+6$.
For $g(f(x))$, replace $x$ in
Then, $f(g(x))=\sqrt{x^{2}-x+6}$ $g(x)=x^{2}-x+6$ with $\sqrt{x}$.
So, $h(x)=\sqrt{x^{2}-x+6}+\frac{2}{x^{\prime}}$ Then, $g(f(x))=(\sqrt{x})^{2}-\sqrt{x}+6$
$x \neq 0$

$$
\text { Or, } g(f(x))=x-\sqrt{x}+6, x \geq 0
$$

So, $h(x)=x-\sqrt{x}+6-$

$$
\sqrt{x^{2}-x+6}, x \geq 0
$$

c) $h(x)=k(g(x))+k(f(x))$
d) $h(x)=f(g(x)) \cdot k(x)$

For $k(g(x))$, replace $x$ in From part a,
$k(x)=\frac{2}{x}$ with $x^{2}-x+6$.

$$
f(g(x))=\sqrt{x^{2}-x+6}
$$

Then, $k(g(x))=\frac{2}{x^{2}-x+6}$
So, $h(x)=\sqrt{x^{2}-x+6} \cdot\left(\frac{2}{x}\right), x \neq 0$
For $k(f(x))$, replace $x$ in
$k(x)=\frac{2}{x}$ with $f(x)=\sqrt{x}$
Then, $k(f(x))=\frac{2}{\sqrt{x}}, x>0$
So, $h(x)=\frac{2}{x^{2}-x+6}+\frac{2}{\sqrt{x}}, x>0$
11. Given the function $y=\left(x^{2}-9\right) \sqrt{x+2}$, determine possible functions in each case:
a) functions $f$ and $g$ so that $y=f(x) \cdot g(x)$

Sample solution:
$f(x)=x^{2}-9$ and $g(x)=\sqrt{x+2}$
b) functions $f, g$, and $h$ so that $y=f(x) \cdot g(h(x))$

Sample solution:
$f(x)=x^{2}-9$
For $g(h(x))$, let $h(x)=x+2$, then $g(x)=\sqrt{x}$
c) functions $f, g$, $h$, and $k$ so that $y=f(x) \cdot k(x) \cdot g(h(x))$

Sample solution:
From part b, for $g(h(x))$, let $h(x)=x+2$, then $g(x)=\sqrt{x}$
Factor: $x^{2}-9=(x+3)(x-3)$
Then, $f(x)=x+3$ and $k(x)=x-3$
12. Is there a function $f(x)$ such that each relationship is true? Justify your answer.
a) $f(f(x))=f(x)$
b) $f(f(x))=f(x)+f(x)$
Yes, when $f(x)=x$, then $f(f(x))=x$

$$
\begin{aligned}
& \text { Yes, when } f(x)=2 x \text {, then } f(f(x))=4 x \\
& \text { and } f(x)+f(x)=2 x+2 x \text {, or } 4 x
\end{aligned}
$$

## C

13. Given $f(x)=\frac{1}{x-2}, g(x)$ is a quadratic function, and $h(x)=f(g(x))$, determine an explicit equation for $g(x)$ for each situation below. Explain your strategies.
a) The domain of $h(x)$ is $x \in \mathbb{R}$.

Sample solution: The denominator of $h(x)$ must never be 0 .
When $g(x)=x^{2}+3$, then $f(g(x))=\frac{1}{x^{2}+3-2^{2}}$, which simplifies to $f(g(x))=\frac{1}{x^{2}+1}$.
b) The domain of $h(x)$ is $x \neq a$ and $x \neq b$, where $a$ and $b$ are real numbers.

Sample solution: There must be exactly two values of $x$ that make the denominator of $h(x)$ equal to 0 . When $g(x)=x^{2}+1$, then
$f(g(x))=\frac{1}{x^{2}+1-2}$, which simplifies to $f(g(x))=\frac{1}{x^{2}-1}$.
So, $a=1$ and $b=-1$
c) The domain of $h(x)$ is $x \neq c$, where $c$ is a real number.

Sample solution: There must be exactly one value of $x$ that makes the denominator of $h(x)$ equal to 0 . When $g(x)=x^{2}+2$, then
$f(g(x))=\frac{1}{x^{2}+2-2^{2}}$, which simplifies to $f(g(x))=\frac{1}{x^{2}}$. So, $c=0$
14. Use $f(x)=\frac{1-x}{1+x}$.
a) Determine an explicit equation for $f(f(x))$, then state the domain of the function.

$$
\begin{aligned}
\operatorname{In} f(x) & =\frac{1-x}{1+x^{\prime}} \text { replace } x \text { with } \frac{1-x}{1+x} \\
f(f(x)) & =\frac{1-\frac{1-x}{1+x}}{1+\frac{1-x}{1+x}} \\
& =\frac{\frac{1+x-(1-x)}{1+x}}{\frac{1+x+(1-x)}{1+x}} \\
& =x, x \neq-1
\end{aligned}
$$

The domain of the function is: $x \neq-1$
b) What is the inverse of $f(x)$ ? Explain.

Since $f(f(x))=x, x \neq-1$, then $f(x)$ is its own inverse.
So, the inverse of $f(x)$ is $f^{-1}(x)=\frac{1-x}{1+x}$.

