Checkpoint 1: Assess Your Understanding, pages 371-374

5.1

1. Use technology to graph each function below. Sketch or print the graph. For each graph, identify its intercepts and the equation of its asymptote.
a) $y=0.7^{x}$

b) $y=4.25^{x}$

There is no x-intercept.
The y-intercept is 1 .
The equation of the asymptote is $y=0$.

There is no x-intercept.
The y-intercept is 1 .
The equation of the asymptote is $y=0$.

5.2

2. Multiple Choice Which equation describes a function whose graph can be obtained by compressing the graph of $y=10^{x}$ horizontally by a factor of $\frac{1}{3}$, then translating the graph 2 units up?
(A.) $y-2=10^{3 x}$
B. $y=3\left(10^{x-2}\right)$
C. $y-2=\frac{1}{3}\left(10^{x}\right)$
D. $y+2=10^{\frac{x}{3}}$
3. Graph each exponential function below. Determine:
i) whether the function is increasing or decreasing
ii) the intercepts
iii) the equation of the asymptote
iv) the domain of the function
v) the range of the function
a) $y=\left(\frac{3}{4}\right)^{x}$
b) $y=6^{x}$

\boldsymbol{x}	\boldsymbol{y}
-3	$2 . \overline{370}$
-2	$1 . \overline{7}$
-1	$1 . \overline{3}$
0	1
1	0.75
2	0.5625
3	0.421875

i) The function is decreasing.
i) The function is increasing.
ii) The graph has no x-intercept. Its y-intercept is 1 .
iii) The equation of the asymptote is $y=0$.
iv) The domain is: $x \in \mathbb{R}$
v) The range is: $y>0$

x	y
-2	$0.02 \overline{7}$
-1	$0.1 \overline{6}$
0	1
1	6
2	36

Its y-intercept is 1 .
iii) The equation of the asymptote is $y=0$.
iv) The domain is: $x \in \mathbb{R}$
v) The range is: $y>0$
4. a) Use transformations to sketch the graph of $y+2=2^{3 x}$.

Compare $y+2=2^{3 x}$ with $y-k=c 2^{d(x-h)}$: $k=-2, c=1, d=3$, and $h=0$ The graph of $y+2=2^{3 x}$ is the image of the graph of $y=2^{x}$ after a horizontal compression by a factor of $\frac{1}{3^{\prime}}$ then a translation of 2 units down. The point (x, y) on $y=2^{x}$ corresponds to the point $\left(\frac{x}{3}, y-2\right)$ on

$y+2=2^{3 x}$.

(x, y)	$\left(\frac{x}{3}, y-2\right)$
$(-3,0.125)$	$(-1,-1.875)$
$(-1,0.5)$	$(-0 . \overline{3},-1.5)$
$(0,1)$	$(0,-1)$
$(1,2)$	$(0 . \overline{3}, 0)$
$(3,8)$	$(1,6)$

b) Determine:
i) whether the function is increasing or decreasing

The function is increasing.
ii) the intercepts

From the table, the x-intercept is $\frac{1}{3}$ and the y-intercept is -1 .
iii) the equation of the asymptote

Since the translation is 2 units down, the horizontal asymptote has equation $y=-2$.
iv) the domain of the function

The domain is $x \in \mathbb{R}$.
v) the range of the function

The range is $y>-2$.

5.3

5. Multiple Choice Which equation has the solution $x=-3$?
A. $5^{x}=(\sqrt[3]{625})^{x+1}$
B. $5^{x}=(\sqrt[3]{625})^{x-1}$
C. $5^{x+1}=(\sqrt[3]{625})^{x}$
(D. $5^{x-1}=(\sqrt[3]{625})^{x}$
6. Solve each equation.
a) $9^{x+2}=27^{x}$
b) $\left(\frac{1}{8}\right)^{x}=4 \sqrt{2}$

$$
\begin{aligned}
3^{2(x+2)} & =3^{3 x} \\
2 x+4 & =3 x \\
x & =4
\end{aligned}
$$

$$
\begin{aligned}
2^{-3 x} & =2^{2} \cdot 2^{\frac{1}{2}} \\
2^{-3 x} & =2^{2+\frac{1}{2}} \\
-3 x & =\frac{5}{2} \\
x & =-\frac{5}{6}
\end{aligned}
$$

7. Use graphing technology to solve each equation. Give the solution to the nearest tenth.
a) $2^{x}=50$
Graph: $y=50-2^{x}$
The approximate zero is 5.6438562
b) $4^{x-2}=3^{x-1}$
Graph: $y=3^{x-1}-4^{x-2}$
$x \doteq 5.6$
The approximate zero is 5.8188417
$x \doteq 5.8$
8. A principal of $\$ 500$ is invested in a savings account that pays 3.5% annual interest, compounded quarterly. To the nearest half year, when will the amount be $\$ 700$?
Use: $A=A_{0}\left(1+\frac{i}{n}\right)^{n t} \quad$ Substitute: $A=700, A_{0}=500, i=0.035, n=4$
$700=500\left(1+\frac{0.035}{4}\right)^{4 t}$
Graph $y=500\left(1+\frac{0.035}{4}\right)^{4 t}-700$, then determine the zero of the function.
The approximate zero is 9.6554904
It will take approximately 9.5 years for the investment to amount to $\$ 700$.
