Checkpoint 2: Assess Your Understanding, pages 413–416

5.4

1. Multiple Choice Given that $\log_m n = p$, which statement is correct?

A. $m^n = p$ **(B.** $n = m^p$ **(C.** $n^p = m$ **(D.** $n = p^m$

2. Write each exponential expression as a logarithmic expression.

a) $8^3 = 512$ The base is 8. The logarithm is 3. So, $3 = \log_8 512$ b) $36^{\frac{1}{2}} = 6$ The base is 36. The logarithm is $\frac{1}{2}$. So, $\frac{1}{2} = \log_{36} 6$ **3.** Use benchmarks to estimate the value of each logarithm to the nearest tenth.

a) log₄60

b) log₉8

Identify powers of 4 close to 60.Identify powers of 9 close to 8. $4^2 = 16$ and $4^3 = 64$ $9^0 = 1$ and $9^1 = 9$ So, 2 < log₄60 < 3</td>So, 0 < log₉8 < 1</td>An estimate is: log₄60 \doteq 2.9An estimate is: log₉8 \doteq 0.9Check.Check. $4^{2.9} \doteq 55.71523605$ $9^{0.9} \doteq 7.224674056$ $4^3 = 64$ So, log₉8 \doteq 0.9So, log₄60 \doteq 3.0

4. Evaluate each logarithm.

a)
$$\log_2 64$$

b) $\log_9 243$
c) $\log_2 \left(\frac{1}{128}\right)$
 $= \log_2 2^6$
 $= 6$
 $= \log_9 (9^{\frac{1}{2}})^5$
 $= \log_9 (9^{\frac{5}{2}})$
 $= \frac{5}{2}$

5. a) Graph $y = \log_4 x$.

Determine values for $y = 4^x$, then interchange the coordinates for the table of values for $y = \log_4 x$.

X	$y = \log_4 x$
0.25	-1
1	0
4	1
16	2

2 -	У		y	=	log	₄ X			
-					-	-			
									X
0	7	2		8	3	1	2	1	6
0									
Z									

b) Identify the intercepts and the equation of the asymptote of the graph, and the domain and range of the function.

```
The graph does not intersect the y-axis, so it does not have a y-intercept.
The graph has x-intercept 1.
The y-axis is a vertical asymptote; its equation is x = 0.
The domain of the function is x > 0.
The range of the function is y \in \mathbb{R}.
```

5.5

- **6.** Multiple Choice Which expression is equal to $\log_3\left(\frac{x}{y}\right)$?
 - A. $\log_3 x + \log_3 y$ B. $\log_3 x \log_3 y$

 C. $\frac{\log_3 x}{\log_3 y}$ D. $3(\log_3 x \log_3 y)$
- 7. Write each expression as a single logarithm.

a)
$$4 \log x - \frac{1}{2} \log y$$

 $= \log x^4 - \log y^{\frac{1}{2}}$
 $= \log \left(\frac{x^4}{y^{\frac{1}{2}}}\right)$
b) $3 \log x + 5 \log y$
 $= \log x^3 + \log y^5$
 $= \log x^3 y^5$

c) $\log x + 3$

 $= \log x + \log 1000$ $= \log 1000x$

5.6

- **8.** Multiple Choice How is the graph of $y = \log_3 x$ transformed to obtain the graph of $y = \log_3 2x 3$?
 - **A.** a horizontal stretch by a factor of 2 and a translation of 3 units down
 - **B.** a vertical stretch by a factor of 2 and a translation of 3 units down
 - C. a vertical stretch by a factor of 2 and a translation of 3 units up
 - (D) a horizontal compression by a factor of $\frac{1}{2}$ and a translation of 3 units down
- **9.** Use technology to graph $y = \log_9 x$. Identify the intercepts and the equation of the asymptote of the graph, and the domain and range of the function.

Graph:
$$y = \frac{\log x}{\log 9}$$

From the graph, the *x*-intercept is 1. There is no *y*-intercept. The equation of the asymptote is x = 0. The domain of the function is x > 0. The range of the function is $y \in \mathbb{R}$. **10.** Approximate the value of each logarithm, to the nearest thousandth.

b) $\log_3\left(\frac{3}{4}\right)$
log 0.75
= <u>log 3</u>
≐ −0.262

11. Graph $y = 3 \log_2(-x + 4)$, then state the characteristics of the function.

Write $y = 3 \log_2(-x + 4)$ as $y = 3 \log_2[-(x - 4)]$, then compare with $y - k = c \log_2 d(x - h):$ $y = 3\log_2(-x+4)$ k = 0, c = 3, d = -1, and h = 48 Use (x, y) corresponds to $\left(\frac{x}{d} + h, cy + k\right)$. л (x, y) on $y = \log_2 x$ corresponds 0 to (-x + 4, 3y) on 4 $y = 3 \log_2[-(x-4)].$ -8-(-x + 4, 3y)(*x*, *y*) (0.25, -2)(3.75, -6)(0.5, -1)(3.5, -3)The x-intercept is 3. The y-intercept is 6. (1, 0) (3, 0) The equation of the asymptote is x = 4. (2, 1) (2, 3) The domain of the function is x < 4. The range of the function is $y \in \mathbb{R}$. (4, 2) (0, 6)

(-4, 9)

(8, 3)

X