Checkpoint 2: Assess Your Understanding, pages 413-416

5.4

1. Multiple Choice Given that $\log _{m} n=p$, which statement is correct?
A. $m^{n}=p$
(B. $n=m^{p}$
C. $n^{p}=m$
D. $n=p^{m}$
2. Write each exponential expression as a logarithmic expression.
a) $8^{3}=512$
b) $36^{\frac{1}{2}}=6$
The base is 8 .
The base is 36 .
The logarithm is 3 .
The logarithm is $\frac{1}{2}$.
So, $3=\log _{8} 512$
So, $\frac{1}{2}=\log _{36} 6$
3. Use benchmarks to estimate the value of each logarithm to the nearest tenth.
a) $\log _{4} 60$
b) $\log _{9} 8$

Identify powers of 4 close to 60 .
Identify powers of 9 close to 8 .
$4^{2}=16$ and $4^{3}=64$
$9^{0}=1$ and $9^{1}=9$
So, $2<\log _{4} 60<3$
An estimate is: $\log _{4} 60 \doteq 2.9$
Check.
So, $0<\log _{9} 8<1$
An estimate is: $\log _{9} 8 \doteq 0.9$
Check.
$4^{2.9} \doteq 55.71523605$
$9^{0.9} \doteq 7.224674056$
$4^{3}=64$
So, $\log _{9} 8=0.9$
4. Evaluate each logarithm.
a) $\log _{2} 64$
b) $\log _{9} 243$
c) $\log _{2}\left(\frac{1}{128}\right)$
$=\log _{2} 2^{6}$
$=6$

$$
\begin{aligned}
& =\log _{9} 3^{5} \\
& =\log _{9}\left(9 \frac{1}{2}\right)^{5} \\
& =\log _{9}\left(9^{5}\right) \\
& =\frac{5}{2}
\end{aligned}
$$

$$
=\log _{2} 2^{-7}
$$

$$
=-7
$$

5. a) Graph $y=\log _{4} x$.

Determine values for $y=4^{x}$, then interchange the coordinates for the table of values for $y=\log _{4} x$.

x	$y=\log _{4} x$
0.25	-1
1	0
4	1
16	2

b) Identify the intercepts and the equation of the asymptote of the graph, and the domain and range of the function.

The graph does not intersect the y-axis, so it does not have a y-intercept.
The graph has x-intercept 1 .
The y-axis is a vertical asymptote; its equation is $x=0$.
The domain of the function is $x>0$.
The range of the function is $y \in \mathbb{R}$.

5.5

6. Multiple Choice Which expression is equal to $\log _{3}\left(\frac{x}{y}\right)$?
A. $\log _{3} x+\log _{3} y$
(B. $\log _{3} x-\log _{3} y$
C. $\frac{\log _{3} x}{\log _{3} y}$
D. $3\left(\log _{3} x-\log _{3} y\right)$
7. Write each expression as a single logarithm.
a) $4 \log x-\frac{1}{2} \log y$
b) $3 \log x+5 \log y$
$=\log x^{4}-\log y^{\frac{1}{2}}$
$=\log x^{3}+\log y^{5}$
$=\log \left(\frac{x^{4}}{y^{\frac{1}{2}}}\right)$
$=\log x^{3} y^{5}$
c) $\log x+3$
$=\log x+\log 1000$
$=\log 1000 x$

5.6

8. Multiple Choice How is the graph of $y=\log _{3} x$ transformed to obtain the graph of $y=\log _{3} 2 x-3$?
A. a horizontal stretch by a factor of 2 and a translation of 3 units down
B. a vertical stretch by a factor of 2 and a translation of 3 units down
C. a vertical stretch by a factor of 2 and a translation of 3 units up
(D.) a horizontal compression by a factor of $\frac{1}{2}$ and a translation of 3 units down
9. Use technology to graph $y=\log _{9} x$. Identify the intercepts and the equation of the asymptote of the graph, and the domain and range of the function.
Graph: $y=\frac{\log x}{\log 9}$
From the graph, the x-intercept is 1 . There is no y-intercept.
The equation of the asymptote is $x=0$.
The domain of the function is $x>0$. The range of the function is $y \in \mathbb{R}$.
10. Approximate the value of each logarithm, to the nearest thousandth.
a) $\log _{2} 35$
b) $\log _{3}\left(\frac{3}{4}\right)$
$=\frac{\log 35}{\log 2}$

$$
=\frac{\log 0.75}{\log 3}
$$

$$
\doteq 5.129
$$

$$
\doteq-0.262
$$

11. Graph $y=3 \log _{2}(-x+4)$, then state the characteristics of the function.

Write $y=3 \log _{2}(-x+4)$ as $y=3 \log _{2}[-(x-4)]$, then compare with
$y-k=c \log _{2} d(x-h):$
$k=0, c=3, d=-1$, and $h=4$
Use (x, y) corresponds to $\left(\frac{x}{d}+h, c y+k\right)$.
(x, y) on $y=\log _{2} x$ corresponds
to $(-x+4,3 y)$ on
$y=3 \log _{2}[-(x-4)]$.

(x, y)	$(-x+4,3 y)$
$(0.25,-2)$	$(3.75,-6)$
$(0.5,-1)$	$(3.5,-3)$
$(1,0)$	$(3,0)$
$(2,1)$	$(2,3)$
$(4,2)$	$(0,6)$
$(8,3)$	$(-4,9)$

The x-intercept is 3 . The y-intercept is 6 . The equation of the asymptote is $x=4$. The domain of the function is $x<4$. The range of the function is $y \in \mathbb{R}$.

