CUMULATIVE REVIEW Chapters 1-5, pages 457-464

1

1. When $b x^{5}+x^{4}-5 x^{3}+x^{2}+2 x-4 b$ is divided by $x+1$, the remainder is -10 . Determine the value of b.

Let $\mathrm{P}(x)=b x^{5}+x^{4}-5 x^{3}+x^{2}+2 x-4 b$
Write $x+1$ as $x-(-1)$
$\mathrm{P}(-1)=b(-1)^{5}+(-1)^{4}-5(-1)^{3}+(-1)^{2}+2(-1)-4 b$

$$
=-b+1+5+1-2-4 b
$$

$$
=-5 b+5
$$

The remainder is -10 .

$$
\text { So, } \begin{aligned}
-5 b+5 & =-10 \quad \text { Solve for } b . \\
-5 b & =-15 \\
b & =3
\end{aligned}
$$

The value of b is 3 .

2

2. For the graph of each rational function below, determine without technology:
i) the equations of any asymptotes and the coordinates of any hole
ii) the domain of the function

Use graphing technology to verify the characteristics.
a) $y=\frac{x^{2}-6 x+8}{x-3}$
i) The function is undefined when $x-3=0$; that is, when $x=3$.
There are no common factors, so there is a vertical asymptote with equation $x=3$.
The degree of the numerator is 1 more than that of the denominator, so there is an oblique asymptote.
Determine:

$$
\left(x^{2}-6 x+8\right) \div(x-3)
$$

3 | 1 | -6 | 8 |
| ---: | ---: | ---: |
| | 3 | -9 |
| 1 | -3 | -1 |

The quotient is $x-3$, so the oblique asymptote has equation $y=x-3$.
ii) The domain is: $x \neq 3$
3. Describe how the graph of $y=\sqrt{x}$ has been translated to create the graph of each function below. Use graphing technology to check.
a) $y=\sqrt{x+3}$

Write $y=\sqrt{x+3}$ as $y=\sqrt{x-(-3)}$, then compare to $y-k=\sqrt{x-h}: h=-3$ and $k=0$
So, the graph of $y=\sqrt{x+3}$ is the graph of $y=\sqrt{x}$ after a translation of 3 units left.
b) $y=\sqrt{x+1}+1$

Write $y=\sqrt{x+1}+1$ as $y-1=\sqrt{x-(-1)}$, then compare to $y-k=\sqrt{x-h}: h=-1$ and $k=1$. So, the graph of $y=\sqrt{x+1}+1$ is the graph of $y=\sqrt{x}$ after a translation of 1 unit left and 1 unit up.
4. Here is the graph of $y=f(x)$. On the same grid, sketch and label the graph of each function.
a) $y=f(-x)$

The graph of $y=f(-x)$ is the image of the graph
 of $y=f(x)$ after a reflection in the y-axis.
Choose points on $y=f(x)$, then reflect them in the y-axis. The line $x=-2$ is an asymptote and its reflection has equation $x=2$. Join the points with 2 smooth curves to form the graph of $y=f(-x)$.
b) $y=-f(x)$

The graph of $y=-f(x)$ is the image of the graph of $y=f(x)$ after a reflection in the x-axis. Choose points on $y=f(x)$, then reflect them in the x-axis. The line $x=-2$ is not changed by the reflection. Join the points with 2 smooth curves to form the graph of $y=-f(x)$.
5. Graph $y=\sqrt{x}$, then apply transformations to sketch the graph of $y-2=-\frac{1}{2} \sqrt{3 x}$. What are the domain and range of this function?

Compare $y-2=-\frac{1}{2} \sqrt{3 x}$ to
$y-k=a \sqrt{b(x-h)}:$
$k=2, a=-\frac{1}{2}, b=3$, and $h=0$
(x, y) on $y=\sqrt{x}$ corresponds to
$\left(\frac{x}{3^{\prime}}-\frac{1}{2} y+2\right)$ on $y-2=-\frac{1}{2} \sqrt{3 x}$.

| Point on |
| :--- | :--- |
| $y=\sqrt{x}$ |\(\left|\begin{array}{l}Point on

y-2=-\frac{1}{2} \sqrt{3 x}\end{array}\right|\)| $(0,0)$ | $\left(\frac{1}{3}, \frac{3}{2}\right)$ |
| :--- | :--- |
| $(1,1)$ | $\left(3, \frac{1}{2}\right)$ |
| $(9,3)$ | |

The domain is: $x \geq 0$; the range is: $y \leq 2$
6. For each graph of a relation below, sketch the graph of its inverse. Is the inverse a function? How do you know?
a)

b)

Reflect each graph in the line $y=x$.
The inverse is a function because its graph passes the vertical line test.

The inverse is a function because its graph passes the vertical line test.
7. Use the graphs of $y=f(x)$ and $y=g(x)$ to sketch the graph of each function below, then identify its domain and range.
a) $y=f(x)-g(x)$
b) $y=\frac{f(x)}{g(x)}$

From the graphs:

x	$f(x)$	$g(x)$	$f(x)-g(x)$	$\frac{f(x)}{g(x)}$
-3	5	-3	8	$-1 . \overline{6}$
-2	0	-2	2	0
-1	-3	-1	-2	3
0	-4	0	-4	undefined
1	-3	1	-4	-3
2	0	2	-2	0
3	5	3	2	$1 . \overline{6}$

Plot points with coordinates $(x, f(x)-g(x))$, which fit on the grid. Join the points with a smooth curve. From the graph, the domain is: $x \in \mathbb{R}$; and the range appears to be $y \geq-4.25$

Plot points with coordinates
$\left(x, \frac{f(x)}{g(x)}\right)$. Since $x \neq 0$, the y-axis is an asymptote, so join the points with 2 smooth curves. From the graph, the domain is: $x \neq 0$; and the range is: $y \in \mathbb{R}$
8. Given that $f(x)=2+x^{2}, g(x)=-3 x+5$, and $h(x)=\sqrt{2-4 x}$, write an explicit equation for $k(x)$ then state its domain.
a) $k(x)=f(x)+g(x)+h(x)$
b) $k(x)=f(x) \cdot g(x)-h(x)$
$k(x)=2+x^{2}-3 x+5$
$k(x)=\left(2+x^{2}\right)(-3 x+5)$
$k(x)=x^{2}-3 x+7+\sqrt{2-4 x}$
For the domain, $2-4 x \geq 0$,
$k(x)=-3 x^{3}+5 x^{2}-6 x+10$

$$
-\sqrt{2-4 x}
$$

so $x \leq 0.5$
For the domain, $2-4 x \geq 0$, so $x \leq 0.5$
9. Use the functions $f(x)=x^{2}-x, g(x)=\frac{1}{3-x}$, and $h(x)=|x+1|$.
a) Determine each value.
i) $f(g(4))$
ii) $g(h(-3))$
$g(4)=\frac{1}{3-4}$, or -1
$h(-3)=|-3+1|$, or 2
$f(g(4))=(-1)^{2}-(-1)$
$g(h(-3))=\frac{1}{3-2}$
$=1$
b) Write an explicit equation for each composite function, then state its domain.
i) $h(g(x))$
ii) $f(f(x))$
$h(g(x))=\left|\frac{1}{3-x}+1\right|$
$h(g(x))=\left|\frac{4-x}{3-x}\right|$
$f(f(x))=\left(x^{2}-x\right)^{2}-\left(x^{2}-x\right)$
$f(f(x))=x^{4}-2 x^{3}+x^{2}-x^{2}+x$
For the domain, $3-x \neq 0$, $f(f(x))=x^{4}-2 x^{3}+x$
so $x \neq 3$
This is a quartic function; its
domain is: $x \in \mathbb{R}$
10. For the function $y=3 x^{2}-12 x+5$, determine possible functions f and g so that $y=f(g(x))$.
Sample response:
Complete the square.
$y=3\left(x^{2}-4 x+4-4\right)+5$
$y=3\left(x^{2}-4 x+4\right)-7$
$y=3(x-2)^{2}-7$
Let $f(g(x))=3(x-2)^{2}-7$
Then $g(x)=x-2$ and $f(x)=3 x^{2}-7$
11. Use transformations to graph $y=-4^{2(x+3)}$. Describe the transformations, then state the characteristics of the graph; include the intercepts, equation of the asymptote, domain, and range.

Compare $y=-4^{2(x+3)}$ with $y-k=c 4^{d(x-h)}$: $k=0, c=-1, d=2$, and $h=-3$
The graph of $y=-4^{2(x+3)}$ is the image of the graph of $y=4^{x}$ after a horizontal compression by a factor of $\frac{1}{2}$, a reflection in the x-axis, then a translation of 3 units left.

A point (x, y) on $y=4^{x}$ corresponds to
the point $\left(\frac{x}{2}-3,-y\right)$ on $y=-4^{2(x+3)}$.

(x, y)	$\left(\frac{x}{2}-3,-y\right)$
$(-2,0.0625)$	$(-4,-0.0625)$
$(-1,0.25)$	$(-3.5,-0.25)$
$(0,1)$	$(-3,-1)$
$(1,4)$	$(-2.5,-4)$
$(2,16)$	$(-2,-16)$

The function is decreasing. There is no x-intercept.
For the y-intercept, substitute $x=0$ in $y=-4^{2(x+3)}$.
$y=-4^{2(0+3)}$
$y=-4^{6}$ or -4096
The horizontal asymptote has equation $y=0$.
The domain is: $x \in \mathbb{R}$; and the range is: $y<0$
12. A cup of coffee contains 150 mg of caffeine. In a healthy adult, the mass, m grams, that remains after t hours is modelled by the function $m=150(0.5)^{0.2 t}$. Use technology.
a) To the nearest half hour, how long will it take until only 10 mg of caffeine remain?

$$
\begin{aligned}
\text { Use } m & =150(0.5)^{0.2 t} \quad \text { Substitute: } m=10 \\
10 & =150(0.5)^{0.2 t}
\end{aligned}
$$

Graph the related function: $y=150(0.5)^{0.2 t}-10$
Determine the approximate zero of the function: 19.534453
It will take approximately 19.5 h until only 10 mg of caffeine remain.
b) To the nearest tenth of a milligram, how much caffeine remains after 24 h ?

$$
\text { Use } \begin{aligned}
m & =150(0.5)^{0.2 t} \quad \text { Substitute: } t=24 \\
m & =150(0.5)^{0.2(24)} \\
m & =5.3845 \ldots
\end{aligned}
$$

After 24 h , approximately 5.4 mg of caffeine remain.
13. Solve each equation.
a) $9^{2 x+1}=\frac{\sqrt[4]{27}}{81}$
b) $\log _{3}(x+5)+\log _{3}(x-1)$ $=2+\log _{3}(x+1)$
$3^{2(2 x+1)}=\frac{3^{\frac{3}{4}}}{3^{4}}$
$x>-5, x>1$, and $x>-1$, so $x>1$

$$
\log _{3}(x+5)(x-1)=\log _{3} 9+\log _{3}(x+1)
$$

$$
3^{2(2 x+1)}=3^{-\frac{13}{4}}
$$

$$
(x+5)(x-1)=9(x+1)
$$

$$
2(2 x+1)=-\frac{13}{4}
$$

$$
x^{2}+4 x-5=9 x+9
$$

$$
x^{2}-5 x-14=0
$$

$$
2 x+1=-\frac{13}{8}
$$

$$
(x+2)(x-7)=0
$$

$$
2 x=-\frac{21}{8}
$$

$x=-2$ or $x=7$
$x=-2$ is extraneous, because $x>1$

$$
x=-\frac{21}{16}
$$

Verify $x=7$:
L.S. $=\log _{3} 12+\log _{3} 6$, or $\log _{3} 72$
Use a calculator to verify.
R.S. $=\log _{3} 9+\log _{3} 8$, or $\log _{3} 72$
The solution is verified.
14. Write each expression in terms of $\log a, \log b$, and $\log c$.
a) $\log \left(\frac{a^{3} \sqrt{b}}{c}\right)$
b) $\log \left(\frac{a^{\frac{2}{3}}}{b \sqrt[4]{c^{\frac{3}{3}}}}\right)$
$=\log a^{3} b^{\frac{1}{2}}-\log c$
$=\log a^{\frac{2}{3}}-\log b \sqrt[4]{c^{3}}$
$=\log a^{3}+\log b^{\frac{1}{2}}-\log c$
$=\log a^{\frac{2}{3}}-\left(\log b+\log \sqrt[4]{c^{3}}\right)$
$=3 \log a+\frac{1}{2} \log b-\log c$

$$
\begin{aligned}
& =\frac{2}{3} \log a-\log b-\log c^{\frac{3}{4}} \\
& =\frac{2}{3} \log a-\log b-\frac{3}{4} \log c
\end{aligned}
$$

15. Write each expression as a single logarithm.
a) $4 \log 3-2 \log 6+2 \log 2$
b) $2 \log _{7} x-\log _{7} y-\frac{1}{4} \log _{7} z$

$$
\begin{aligned}
& =\log 3^{4}-\log 6^{2}+\log 2^{2} \\
& =\log 81-\log 36+\log 4 \\
& =\log \left(\frac{81 \cdot 4}{36}\right) \\
& =\log 9
\end{aligned}
$$

16. On March 11, 2011, an earthquake off the coast of Japan had a magnitude of 9.0 and it caused a tsunami. To the nearest tenth, determine the magnitude of an earthquake that is one-half as intense as this earthquake.

$$
\text { Use: } \begin{aligned}
M & =\log \left(\frac{I}{S}\right) \quad \text { Substitute: } M=9.0 \\
9.0 & =\log \left(\frac{I}{S}\right) \\
\frac{I}{S} & =10^{9.0} \\
I & =10^{9.0} \mathrm{~S}
\end{aligned}
$$

An earthquake that is one-half as intense has intensity: $I=0.5\left(10^{9.0} S\right)$ Work backward.

$$
\begin{aligned}
\frac{I}{S} & =0.5\left(10^{9.0}\right) \quad \text { Take the common logarithm of each side. } \\
\log \left(\frac{I}{S}\right) & =\log \left[0.5\left(10^{9.0}\right)\right] \\
M & =8.6989 \ldots
\end{aligned}
$$

The magnitude is approximately 8.7.

