CUMULATIVE REVIEW Chapters 1-5, pages 457–464

1

1. When $bx^5 + x^4 - 5x^3 + x^2 + 2x - 4b$ is divided by x + 1, the remainder is -10. Determine the value of b.

```
Let P(x) = bx^5 + x^4 - 5x^3 + x^2 + 2x - 4b

Write x + 1 as x - (-1)

P(-1) = b(-1)^5 + (-1)^4 - 5(-1)^3 + (-1)^2 + 2(-1) - 4b

= -b + 1 + 5 + 1 - 2 - 4b

= -5b + 5

The remainder is -10.

So, -5b + 5 = -10 Solve for b.

-5b = -15

b = 3

The value of b is 3.
```

2

2. For the graph of each rational function below, determine without technology:

i) the equations of any asymptotes and the coordinates of any hole

ii) the domain of the function

Use graphing technology to verify the characteristics.

a) $y = \frac{x^2 - 6x + 8}{x - 3}$

b)
$$y = \frac{-3x + 12}{x^2 + 3}$$

i) The function is undefined when x - 3 = 0; that is, when x = 3. There are no common factors, so there is a vertical asymptote with equation x = 3.The degree of the numerator is 1 more than that of the denominator, so there is an oblique asymptote. **Determine:** $(x^2 - 6x + 8) \div (x - 3)$ 3 | 1 -6 8 3 -9 1 - 3 - 1The quotient is x - 3, so the oblique asymptote has equation y = x - 3. ii) The domain is: $x \neq 3$

i) Since x² + 3 is always positive, the function is defined for all real values of x. The degree of the numerator is less than the degree of the denominator, so there is a horizontal asymptote with equation y = 0.
ii) The domain is: x ∈ ℝ

3

3. Describe how the graph of $y = \sqrt{x}$ has been translated to create the graph of each function below. Use graphing technology to check.

a)
$$y = \sqrt{x + 3}$$

Write $y = \sqrt{x + 3}$ as $y = \sqrt{x - (-3)}$, then compare to $y - k = \sqrt{x - h}$: h = -3 and k = 0So, the graph of $y = \sqrt{x + 3}$ is the graph of $y = \sqrt{x}$ after a translation of 3 units left.

b) $y = \sqrt{x+1} + 1$

Write $y = \sqrt{x + 1} + 1$ as $y - 1 = \sqrt{x - (-1)}$, then compare to $y - k = \sqrt{x - h}$: h = -1 and k = 1. So, the graph of $y = \sqrt{x + 1} + 1$ is the graph of $y = \sqrt{x}$ after a translation of 1 unit left and 1 unit up.

4. Here is the graph of y = f(x). On the same grid, sketch and label the graph

of each function.

a) y = f(-x)

The graph of y = f(-x) is the image of the graph of y = f(x) after a reflection in the y-axis. Choose points on y = f(x), then reflect them in the y-axis. The line x = -2 is an asymptote and its reflection has equation x = 2. Join the points with 2 smooth curves to form the graph of y = f(-x).

b) y = -f(x)

The graph of y = -f(x) is the image of the graph of y = f(x) after a reflection in the *x*-axis. Choose points on y = f(x), then reflect them in the *x*-axis. The line x = -2 is not changed by the reflection. Join the points with 2 smooth curves to form the graph of y = -f(x).

5. Graph $y = \sqrt{x}$, then apply transformations to sketch the graph of $y - 2 = -\frac{1}{2}\sqrt{3x}$. What are the domain and range of this function?

Compare $y - 2 = -\frac{1}{2}\sqrt{3x}$ to $y - k = a\sqrt{b(x - h)}$: $k = 2, a = -\frac{1}{2}, b = 3, \text{ and } h = 0$ (x, y) on $y = \sqrt{x}$ corresponds to $\left(\frac{x}{3}, -\frac{1}{2}y + 2\right)$ on $y - 2 = -\frac{1}{2}\sqrt{3x}$.

Point on $y = \sqrt{x}$	Point on $y - 2 = -\frac{1}{2}\sqrt{3x}$
(0, 0)	(0, 2)
(1, 1)	$\left(\frac{1}{3},\frac{3}{2}\right)$
(9, 3)	$\left(3,\frac{1}{2}\right)$

The domain is: $x \ge 0$; the range is: $y \le 2$

6. For each graph of a relation below, sketch the graph of its inverse. Is the inverse a function? How do you know?

b)					8 -	У				1
					Ŭ				1	
					4 -			1		
	<u> </u>									
						1				X
	-8	3	_/	-	P	_	4	1	_ {	3
	-	-		-	4-			-		_
		1	ŕ		\vdash					_
		-		-	8-					

Reflect each graph in the line y = x.

The inverse is a function because its graph passes the vertical line test. The inverse is a function because its graph passes the vertical line test.

4

7. Use the graphs of y = f(x) and y = g(x) to sketch the graph of each function below, then identify its domain and range.

From the graphs:

x	f(x)	<i>g</i> (x)	f(x) - g(x)	$\frac{f(x)}{g(x)}$
-3	5	-3	8	-1.ē
-2	0	-2	2	0
-1	-3	-1	-2	3
0	-4	0	-4	undefined
1	-3	1	-4	-3
2	0	2	-2	0
3	5	3	2	1.6

Plot points with coordinates (x, f(x) - g(x)), which fit on the grid. Join the points with a smooth curve. From the graph, the domain is: $x \in \mathbb{R}$; and the range appears to be $y \ge -4.25$

Plot points with coordinates

 $\left(x, \frac{f(x)}{g(x)}\right)$. Since $x \neq 0$, the *y*-axis is an asymptote, so join the points with 2 smooth curves. From the graph, the domain is: $x \neq 0$; and the range is: $y \in \mathbb{R}$

8. Given that $f(x) = 2 + x^2$, g(x) = -3x + 5, and $h(x) = \sqrt{2 - 4x}$, write an explicit equation for k(x) then state its domain.

a)
$$k(x) = f(x) + g(x) + h(x)$$

 $k(x) = 2 + x^2 - 3x + 5 + \sqrt{2 - 4x}$
 $k(x) = x^2 - 3x + 7 + \sqrt{2 - 4x}$
For the domain, $2 - 4x \ge 0$,
so $x \le 0.5$
b) $k(x) = f(x) \cdot g(x) - h(x)$
 $k(x) = (2 + x^2)(-3x + 5) - \sqrt{2 - 4x}$
 $k(x) = -3x^3 + 5x^2 - 6x + 10 - \sqrt{2 - 4x}$
For the domain, $2 - 4x \ge 0$,
so $x \le 0.5$
For the domain, $2 - 4x \ge 0$,
so $x \le 0.5$

9. Use the functions $f(x) = x^2 - x$, $g(x) = \frac{1}{3 - x}$, and h(x) = |x + 1|.

- **a**) Determine each value.
 - i) f(g(4)) $g(4) = \frac{1}{3-4}$, or -1 $f(g(4)) = (-1)^2 - (-1)$ $g(h(-3)) = \frac{1}{3-2}$ $g(h(-3)) = \frac{1}{3-2}$ = 1
- **b**) Write an explicit equation for each composite function, then state its domain.
 - i) $h(g(x)) = \left|\frac{1}{3-x} + 1\right|$ $h(g(x)) = \left|\frac{4-x}{3-x}\right|$ For the domain, $3 - x \neq 0$, $so x \neq 3$ ii) $f(f(x)) = (x^2 - x)^2 - (x^2 - x)$ $f(f(x)) = x^4 - 2x^3 + x^2 - x^2 + x$ $f(f(x)) = x^4 - 2x^3 + x$ This is a quartic function; its domain is: $x \in \mathbb{R}$
- **10.** For the function $y = 3x^2 12x + 5$, determine possible functions f and g so that y = f(g(x)).

Sample response: Complete the square. $y = 3(x^2 - 4x + 4 - 4) + 5$ $y = 3(x^2 - 4x + 4) - 7$ $y = 3(x - 2)^2 - 7$ Let $f(g(x)) = 3(x - 2)^2 - 7$ Then g(x) = x - 2 and $f(x) = 3x^2 - 7$

5

11. Use transformations to graph $y = -4^{2(x+3)}$. Describe the transformations, then state the characteristics of the graph; include the intercepts, equation of the asymptote, domain, and range.

Compare $y = -4^{2(x+3)}$ with $y - k = c4^{d(x-h)}$: k = 0, c = -1, d = 2, and h = -3The graph of $y = -4^{2(x+3)}$ is the image of the graph of $y = 4^x$ after a horizontal compression by a factor of $\frac{1}{2}$, a reflection in the x-axis, then a translation of 3 units left. A point (x, y) on $y = 4^x$ corresponds to the point $\left(\frac{x}{2} - 3, -y\right)$ on $y = -4^{2(x+3)}$. (x, y) $\left(\frac{x}{2} - 3, -y\right)$

 (-2, 0.0625)
 (-4, -0.0625)

 (-1, 0.25)
 (-3.5, -0.25)

 (0, 1)
 (-3, -1)

 (1, 4)
 (-2.5, -4)

 (2, 16)
 (-2, -16)

The function is decreasing. There is no x-intercept. For the y-intercept, substitute x = 0 in $y = -4^{2(x+3)}$. $y = -4^{2(0+3)}$ $y = -4^{6}$ or -4096The horizontal asymptote has equation y = 0. The domain is: $x \in \mathbb{R}$; and the range is: y < 0

- **12.** A cup of coffee contains 150 mg of caffeine. In a healthy adult, the mass, *m* grams, that remains after *t* hours is modelled by the function $m = 150(0.5)^{0.2t}$. Use technology.
 - **a**) To the nearest half hour, how long will it take until only 10 mg of caffeine remain?

```
Use m = 150(0.5)^{0.2t} Substitute: m = 10

10 = 150(0.5)^{0.2t}

Graph the related function: y = 150(0.5)^{0.2t} - 10

Determine the approximate zero of the function: 19.534453

It will take approximately 19.5 h until only 10 mg of caffeine remain.
```

b) To the nearest tenth of a milligram, how much caffeine remains after 24 h?

```
Use m = 150(0.5)^{0.2t} Substitute: t = 24

m = 150(0.5)^{0.2(24)}

m = 5.3845...

After 24 h, approximately 5.4 mg of caffeine remain.
```

13. Solve each equation.

a)
$$9^{2x+1} = \frac{\sqrt[4]{27}}{81}$$

b) $\log_3(x + 5) + \log_3(x - 1)$
 $= 2 + \log_3(x + 1)$
 $3^{2(2x+1)} = \frac{3^{\frac{3}{4}}}{3^4}$
 $3^{2(2x+1)} = 3^{-\frac{13}{4}}$
 $2(2x + 1) = -\frac{13}{4}$
 $2x + 1 = -\frac{13}{8}$
 $x = -\frac{21}{16}$
Use a calculator to verify.
b) $\log_3(x + 5) + \log_3(x - 1)$
 $x > -5, x > 1, and x > -1, so x > 1$
 $\log_3(x + 5)(x - 1) = \log_3 9 + \log_3(x + 1)$
 $x^2 + 4x - 5 = 9x + 9$
 $x^2 - 5x - 14 = 0$
 $(x + 2)(x - 7) = 0$
 $x = -2 \text{ or } x = 7$
 $x = -2 \text{ is extraneous, because } x > 1$
Verify $x = 7$:
L.S. = log_3 12 + log_36, or log_372
The solution is verified.

14. Write each expression in terms of log *a*, log *b*, and log *c*.

a)
$$\log\left(\frac{a^{3}\sqrt{b}}{c}\right)$$

b) $\log\left(\frac{a^{\frac{3}{3}}}{b\sqrt[4]{c^{3}}}\right)$
b) $\log\left(\frac{a^{\frac{3}{3}}}{b\sqrt[4]{c^{3}}}\right)$
c $\log a^{3}b^{\frac{1}{2}} - \log c$
c $\log a^{3} + \log b^{\frac{1}{2}} - \log c$
c $\log a^{\frac{2}{3}} - \log b\sqrt[4]{c^{3}}$
e $\log a^{\frac{2}{3}} - (\log b + \log \sqrt[4]{c^{3}})$
e $\frac{2}{3}\log a - \log b - \log c^{\frac{3}{4}}$
e $\frac{2}{3}\log a - \log b - \log c^{\frac{3}{4}}$
e $\frac{2}{3}\log a - \log b - \frac{3}{4}\log c$

15. Write each expression as a single logarithm.

a)
$$4 \log 3 - 2 \log 6 + 2 \log 2$$
 b) $2 \log_7 x - \log_7 y - \frac{1}{4} \log_7 z$

$$= \log 3^4 - \log 6^2 + \log 2^2 = \log_7 x^2 - \log_7 y - \log_7 z^{\frac{1}{4}}$$

$$= \log \left(\frac{81 \cdot 4}{36}\right) = \log_7 \left(\frac{x^2}{yz \frac{1}{4}}\right)$$

16. On March 11, 2011, an earthquake off the coast of Japan had a magnitude of 9.0 and it caused a tsunami. To the nearest tenth, determine the magnitude of an earthquake that is one-half as intense as this earthquake.

Use: $M = \log\left(\frac{l}{5}\right)$ Substitute: M = 9.0 $9.0 = \log\left(\frac{l}{5}\right)$ $\frac{l}{5} = 10^{9.0}$ $l = 10^{9.0}S$ An earthquake that is one-half as intense has intensity: $l = 0.5(10^{9.0}S)$ Work backward. $\frac{l}{5} = 0.5(10^{9.0})$ Take the common logarithm of each side. $\log\left(\frac{l}{5}\right) = \log\left[0.5(10^{9.0})\right]$

M = 8.6989...

The magnitude is approximately 8.7.