REVIEW, pages 444-452

5.1

1. Complete the table of values, then graph $y=\left(\frac{1}{4}\right)^{x}$.

\boldsymbol{x}	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
\boldsymbol{y}	16	4	1	0.25	0.0625

5.2
2. a) Graph $y=3 \cdot 5^{x}$ for $-2 \leq x \leq 2$.

Make a table of values.
Write the coordinates to the nearest hundredth.

x	-2	-1	0	1	2
y	0.08	0.29	1	3.5	12.25

b) Determine:
i) whether the function is increasing or decreasing The function is increasing.
ii) the intercepts

There is no x-intercept; the y-intercept is 1 .
iii) the equation of the asymptote

The asymptote has equation $y=0$.
iv) the domain of the function

The domain is $x \in \mathbb{R}$.
v) the range of the function

The range is $y>0$.
3. Use technology to graph each function below. For each graph:
i) identify the intercepts
ii) identify the equation of the asymptote and state why it is significant
a) $y=0.8^{x}$
b) $y=2.75^{x}$
i) There is no x-intercept. The y-intercept is 1 .
ii) The equation of the asymptote is $y=0$. This is the line that the graph approaches as x increases.
i) There is no x-intercept. The y-intercept is 1 .
ii) The equation of the asymptote is $y=0$.
This is the line that the graph approaches as x decreases.
4. a) Sketch the graph of $y=-\frac{1}{2}\left(3^{2 x}\right)-1$.

Write the function as: $y+1=-\frac{1}{2}\left(3^{2 x}\right)$
Compare $y+1=-\frac{1}{2}\left(3^{2 x}\right)$ with $y-k=c 3^{d(x-h)}$:
$k=-1, c=-\frac{1}{2}, d=2$, and $h=0$
Use the general transformation:
(x, y) corresponds to $\left(\frac{x}{d}+h, c y+k\right)$

The point (x, y) on $y=3^{x}$ corresponds
to the point $\left(\frac{x}{2},-\frac{1}{2} y-1\right)$ on
$y+1=-\frac{1}{2}\left(3^{2 x}\right)$.
Choose points (x, y) on $y=3^{x}$.

(x, y)	$\left(\frac{x}{2},-\frac{1}{2} y-1\right)$
$\left(-2, \frac{1}{9}\right)$	$\left(-1,-\frac{19}{18}\right)$
$\left(-1, \frac{1}{3}\right)$	$\left(-\frac{1}{2},-\frac{7}{6}\right)$
$(0,1)$	$\left(0,-\frac{3}{2}\right)$
$(1,3)$	$\left(\frac{1}{2},-\frac{5}{2}\right)$
$(2,9)$	$\left(1,-\frac{11}{2}\right)$

b) From the graph, identify:
i) whether the function is increasing or decreasing

The function is decreasing.
ii) the intercepts

There is no x-intercept. From the table, the y-intercept is -1.5 .
iii) the equation of the asymptote

The asymptote has equation $y=-1$.
iv) the domain of the function

The domain of the function is $x \in \mathbb{R}$.
v) the range of the function

The range of the function is $y<-1$.

5.3

5. Solve each equation.
a) $4^{x}=128$
$2^{2 x}=2^{7}$
$2 x=7$
$x=3.5$
b) $27^{x+1}=81^{x-2}$

$$
\begin{aligned}
3^{3(x+1)} & =3^{4 x-2)} \\
3 x+3 & =4 x-8 \\
x & =11
\end{aligned}
$$

c) $9^{x}=27 \sqrt[4]{3}$
$3^{2 x}=\left(3^{3}\right)\left(3^{\frac{1}{4}}\right)$
$2 x=3.25$
$x=1.625$
d) $\frac{\sqrt[3]{2}}{8}=4^{x}$
$\left(2^{\frac{1}{3}}\right)\left(2^{-3}\right)=2^{2 x}$
$-\frac{8}{3}=2 x$
$x=-\frac{4}{3}$
6. Solve the equation $1.04^{2 x}=2$. Give the solution to the nearest tenth.

Use technology to graph $y=1.04^{2 x}$ and $y=2$.
Determine the approximate x-coordinate of the point of intersection:
8.8364938

The solution is: $x \doteq 8.8$
7. A new combine, used for harvesting wheat, costs $\$ 370000$. Its value depreciates by 10% each year. The value of the combine, v thousands of dollars, after t years can be modelled by this function: $v=370(0.9)^{t}$
a) What is the value of the combine when it is 5 years old? Give the answer to the nearest thousand dollars.

Use technology to graph $y=370(0.9)^{x}$ for $0<x<15$.
Press: TRACE 5 ENTER to display:
$X=5 \quad Y=218.4813$
After 5 years, the value of the combine is approximately $\$ 218000$.
b) When will the combine be worth $\$ 100000$? Give the answer to the nearest half year.

Graph $y=100$ on the same screen as $y=370(0.9)^{x}$.
Use 5: intersect from the CALC menu to display:
$X=12.417677 \quad Y=100$
The combine will be worth $\$ 100000$ after approximately 12.5 years.
8. A principal of $\$ 2500$ is invested at 3% annual interest, compounded semi-annually. To the nearest year, how long will it be until the amount is $\$ 3000$?

Use the formula:
$A=A_{0}\left(1+\frac{i}{n}\right)^{n t} \quad$ Substitute: $A=3000, A_{0}=2500, i=0.03, n=2$
$3000=2500(1.015)^{2 t}$
Use technology to graph $y=2500(1.015)^{2 x}$ and $y=3000$ for $0<x<10$.
Use 5: intersect from the CALC menu to display:
$X=6.1228525 \quad Y=3000$
After approximately 6 years, the amount will be $\$ 3000$.
5.4
9. a) Write each logarithmic expression as an exponential expression.
i) $\log _{3} 729=6$
ii) $\log _{4} 2 \sqrt{2}=\frac{3}{4}$

The base is 3 .
The exponent is 6 .
So, $729=3^{6}$
The base is 4 .
The exponent is $\frac{3}{4}$.
So, $2 \sqrt{2}=4^{\frac{3}{4}}$
b) Write each exponential expression as a logarithmic expression.
i) $4^{5}=1024$
ii) $5^{-4}=\frac{1}{625}$

The base is 4 .
The logarithm is 5 .
So, $5=\log _{4} 1024$

The base is 5 .
The logarithm is -4 .

$$
\text { So, }-4=\log _{5}\left(\frac{1}{625}\right)
$$

10. For each logarithm below, determine its exact value or use benchmarks to determine its approximate value to the nearest tenth.
a) $\log _{7} 343$
$=\log _{7}\left(7^{3}\right)$
$=3$
b) $\log _{8} 100$
Identify powers of 8 close to 100.
$8^{2}=64$ and $8^{3}=512$
So, $2<\log _{8} 100<3$
An estimate is: $\log _{8} 100 \doteq 2.2$
Check.
$8^{2.2} \doteq 97.00586026$
$8^{2.3} \doteq 119.4282229$
So, $\log _{8} 100 \doteq 2.2$
c) $\log _{2} 20$
d) $\log _{4}\left(\frac{1}{32}\right)$
Identify powers of 2

$$
\begin{aligned}
& =\log _{4}\left(2^{-5}\right) \\
& =\log _{4}\left(4^{\frac{1}{2}}\right)^{-5} \\
& =\log _{4}\left(4^{-\frac{5}{2}}\right) \\
& =-\frac{5}{2}
\end{aligned}
$$

Check.
$2^{4.3} \doteq 19.69831061$
$2^{4.4}=21.11212657$
So, $\log _{2} 20 \doteq 4.3$
11. a) Graph $y=\log _{6} x$.

Determine values for $y=6^{x}$, then interchange
the coordinates for the
table of values for $y=\log _{6} x$.

x	$y=\log _{6} x$
$\frac{1}{6}$	-1
1	0
6	1

b) Identify the intercepts and the equation of the asymptote of the graph, and the domain and range of the function.

There is no y-intercept. The x-intercept is 1 .
The asymptote has equation $x=0$.
The domain is $x>0$. The range is $y \in \mathbb{R}$.
c) How could you use the graph of $y=\log _{6} x$ to graph $y=6^{x}$?

Use your strategy to graph $y=6^{x}$ on the grid in part a.
I reflect points on the graph of $y=\log _{6} x$ in the line $y=x$, then join the points for the graph of $y=6^{x}$.

5.5

12. Write each expression as a single logarithm.
a) $3 \log x+\frac{1}{2} \log y-2 \log z$
b) $4+\log _{2} 3$

$$
\begin{aligned}
& =\log x^{3}+\log y^{\frac{1}{2}}-\log z^{2} \\
& =\log \left(\frac{x^{3} y^{\frac{1}{2}}}{z^{2}}\right)
\end{aligned}
$$

$$
=\log _{2} 16+\log _{2} 3
$$

$$
=\log _{2} 48
$$

13. Evaluate: $2 \log _{4} 6-\log _{4} 18+\log _{4} 8$
$=\log _{4} 6^{2}+\log _{4} 8-\log _{4} 18$
$=\log _{4}\left(\frac{36 \cdot 8}{18}\right)$
$=\log _{4} 16$
$=\log _{4} 4^{2}$
$=2$

5.6

14. Approximate the value of each logarithm, to the nearest thousandth.
a) $\log _{5} 600$
b) $\log _{3} 0.1$

$$
\begin{aligned}
\log _{5} 600 & =\frac{\log 600}{\log 5} \\
& =3.9746 \ldots \\
& =3.975
\end{aligned}
$$

$$
\begin{aligned}
\log _{3} 0.1 & =\frac{\log 0.1}{\log 3} \\
& =-2.0959 \ldots \\
& =-2.096
\end{aligned}
$$

15. Use technology to graph $y=\log _{9} x$. Identify the intercepts and the equation of the asymptote of the graph, and the domain and range of the function.

Graph: $y=\frac{\log x}{\log 9}$
Use the zero feature from the CALC menu; the x-intercept is 1 . There is no y-intercept.
The equation of the asymptote is $x=0$.
The domain of the function is $x>0$. The range of the function is $y \in \mathbb{R}$.
16. a) Sketch the graph of $y=\log _{5}(3 x-6)+3$.

Write $y=\log _{5}(3 x-6)+3$ as $y-3=\log _{5} 3(x-2)$.
Compare $y-3=\log _{5} 3(x-2)$ with $y-k=c \log _{5} d(x-h)$:
$k=3, c=1, d=3$, and $h=2$
Use the general transformation: (x, y) corresponds to $\left(\frac{x}{d}+h, c y+k\right)$
The point (x, y) on $y=\log _{5} x$ corresponds to the point $\left(\frac{x}{3}+2, y+3\right)$ on $y=\log _{5}(3 x-6)+3$.

(x, y)	$\left(\frac{x}{3}+2, y+3\right)$
$\left(\frac{1}{25},-2\right)$	$\left(\frac{151}{75}, 1\right)$
$\left(\frac{1}{5},-1\right)$	$\left(\frac{31}{15}, 2\right)$
$(1,0)$	$\left(\frac{7}{3}, 3\right)$
$(5,1)$	$\left(\frac{11}{3}, 4\right)$

b) Identify the intercepts and the equation of the asymptote of the graph of $y=\log _{5}(3 x-6)+3$, and the domain and range of this function.

There is no y-intercept.
For the x-intercept, substitute $y=0$ in $y=\log _{5}(3 x-6)+3$, then solve for x.

$$
\begin{aligned}
0 & =\log _{5}(3 x-6)+3 \\
\log _{5}(3 x-6) & =-3 \\
3 x-6 & =5^{-3} \\
3 x & =6+\frac{1}{125} \\
3 x & =\frac{751}{125} \\
x & =\frac{751}{375}
\end{aligned}
$$

The equation of the asymptote is $x=2$.
The domain of the function is $x>2$.
The range of the function is $y \in \mathbb{R}$.

5.7

17. Solve, then verify each logarithmic equation.
a) $3=\log _{2}(x+5)+\log _{2}(x+7)$
b) $\log x+\log (x+1)=\log (7 x-8)$

$$
\begin{aligned}
x>-5 \text { and } x & >-7 ; \text { so } x>-5 \\
3 & =\log _{2}(x+5)(x+7) \\
2^{3} & =(x+5)(x+7)
\end{aligned}
$$

$$
x>0, x>-1, x>\frac{8}{7} ; \text { so } x>\frac{8}{7}
$$

$$
\log x(x+1)=\log (7 x-8)
$$

$$
x^{2}+12 x+27=0
$$

$$
(x+9)(x+3)=0
$$

$$
x=-9 \text { or } x=-3
$$

$$
x=-9 \text { is extraneous. }
$$

$$
\text { Verify: } x=-3
$$

$$
\begin{aligned}
\text { R.S. } & =\log _{2} 2+\log _{2} 4 \\
& =1+2 \\
& =3 \\
& =\text { L.S. }
\end{aligned}
$$

The solution is verified.
18. Solve each equation algebraically. Give the solution to the nearest hundredth.
a) $5\left(3^{x}\right)=60$
b) $3^{x+4}=5^{x+1}$
$3^{x}=12$
$\log _{3} 3^{x}=\log _{3} 12$
$x=\frac{\log 12}{\log 3}$
$x \doteq 2.26$

$$
\begin{aligned}
\log 3^{x+4} & =\log 5^{x+1} \\
(x+4) \log 3 & =(x+1) \log 5 \\
x \log 3+4 \log 3 & =x \log 5+\log 5 \\
x(\log 3-\log 5) & =\log 5-4 \log 3 \\
x & =\frac{\log 5-4 \log 3}{\log 3-\log 5} \\
x & =5.45
\end{aligned}
$$

5.8

19. The pH of a solution can be described by the equation $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$, where $\left[\mathrm{H}^{+}\right]$is the hydrogen-ion concentration in moles/litre.
a) Determine the hydrogen-ion concentration in pure water with a pH of 7 .
Substitute $\mathrm{pH}=7$ in the equation: $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$7=-\log \left[H^{+}\right] \quad$ Write in exponential form.
$\left[H^{+}\right]=10^{-7}$
The hydrogen-ion concentration of pure water is 10^{-7} moles/litre.
b) How are the hydrogen-ion concentrations of these liquids related:
black coffee with a pH of 5 and pure water?
For the hydrogen-ion concentration of black coffee, substitute $\mathrm{pH}=5$ in the equation: $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$5=-\log \left[\mathrm{H}^{+}\right] \quad$ Write in exponential form.
$\left[H^{+}\right]=10^{-5}$
The hydrogen-ion concentration of black coffee is 10^{-5} moles/litre.
$\frac{10^{-5}}{10^{-7}}=10^{2}$, or 100
So, black coffee has 100 times as many hydrogen ions per litre as pure water.
