Lesson 6.4 Math Lab: Assess Your Understanding, page 512

Use graphing technology.

- **1.** Explain why each of $y = \sin x$, $y = \cos x$, and $y = \tan x$ is a function.
- Any vertical line drawn through a point *x* in the domain intersects the graph of each function in exactly one point.
 - 2. Graph y = sin x for −4π ≤ x ≤ 4π. Identify the domain, range, and zeros of the graph. Write a general expression that represents the zeros.
- The domain is: $-4\pi \le x \le 4\pi$; the range is: $-1 \le y \le 1$ The zeros are: $\pm 4\pi$, $\pm 3\pi$, $\pm 2\pi$, $\pm \pi$, 0 A general expression for the zeros is: $k\pi$, $k \in \mathbb{Z}$
 - **3.** Repeat question 2 for $y = \cos x$ for $-4\pi \le x \le 4\pi$.

Ø

- The domain is: $-4\pi \le x \le 4\pi$; the range is: $-1 \le y \le 1$ The zeros are: $\pm \frac{7\pi}{2}, \pm \frac{5\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{\pi}{2}$ The zeros are the products of all odd integers and $\frac{\pi}{2}$. A general expression for the zeros is: $(2k + 1)\frac{\pi}{2}, k \in \mathbb{Z}$
- **4.** Repeat question 2 for $y = \tan x$ for $-4\pi \le x \le 4\pi$. Identify the equations of the asymptotes and write a general expression that represents them.
- The domain is: $x \neq \pm \frac{\pi}{2}, x \neq \pm \frac{3\pi}{2}, x \neq \pm \frac{5\pi}{2}, x \neq \pm \frac{7\pi}{2}$ The range is: $y \in \mathbb{R}$ The zeros are: $\pm 4\pi, \pm 3\pi, \pm 2\pi, \pm \pi, 0$ A general expression for the zeros is: $k\pi, k \in \mathbb{Z}$ The equations of the asymptotes are: $x = \pm \frac{\pi}{2}$; $x = \pm \frac{3\pi}{2}$; $x = \pm \frac{5\pi}{2}$; and $x = \pm \frac{7\pi}{2}$ A general expression for these equations is: $x = (2k + 1)\frac{\pi}{2}, k \in \mathbb{Z}$